Deep Reinforcement Learning深度增强学习可以说发源于2013年DeepMind的Playing Atari with Deep Reinforcement Learning 一文,之后2015年DeepMind 在Nature上发表了Human Level Control through Deep Reinforcement Learning一文使Deep Reinforcement Learning得到了较广泛的关注,在2015年涌现了较多的Deep Reinforcement Learning的成果。而2016年,随着AlphaGo的出现,Deep Reinforcement Learning 将进入全面发展的阶段。
Deep Reinforcement Learning面向决策与控制问题,而决策与控制很大程度上决定了人工智能的发展水平。也因此,AlphaGo的出现具有里程碑的意义。Deep Reinforcement Learning研究使用深度神经网络来解决决策控制问题,是深度学习领域最前沿的研究方向之一。
本文主要收集与Deep Reinforcement Learning相关的各种资料,希望对有兴趣研究的童鞋有所帮助。接下来,本专栏将由我继续发布Deep Reinforcement Learning的相关文章。
PS:最新的资料会在资料前方标出。
2.Guest Post (Part II): Deep Reinforcement Learning with Neon
3.Blog Post (Part III): Deep Reinforcement Learning with OpenAI Gym
ICLR 2015 part 1 https://www.youtube.com/watch?v=EX1CIVVkWdE
ICLR 2015 part 2 https://www.youtube.com/watch?v=zXa6UFLQCtg
UAI 2015 https://www.youtube.com/watch?v=qLaDWKd61Ig
RLDM 2015 Deep Reinforcement Learning
ICML 2016:深度增强学习TutorialAlphaGo Tutorial
这两个人收集的基本涵盖了当前deep reinforcement learning 的论文资料。目前确实不多。
在github可以找到dqn,ddpg,a3c, trpo 等深度增强学习典型算法的代码,以下为一些举例的开源代码: