Coursera—machine learning(Andrew Ng)第五周编程作业

仲孙献
2023-12-01

sigmoidGradient.m

function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
%   g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
%   evaluated at z. This should work regardless if z is a matrix or a
%   vector. In particular, if z is a vector or matrix, you should return
%   the gradient for each element.

g = zeros(size(z));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
%               each value of z (z can be a matrix, vector or scalar).

g = sigmoid(z) .* (1 - sigmoid(z)) %g'(z)

% =============================================================

end

randInitializeWeights.m

function W = randInitializeWeights(L_in, L_out)
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
%incoming connections and L_out outgoing connections
%   W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights 
%   of a layer with L_in incoming connections and L_out outgoing 
%   connections. 
%
%   Note that W should be set to a matrix of size(L_out, 1 + L_in) as
%   the first column of W handles the "bias" terms
%

% You need to return the following variables correctly 
W = zeros(L_out, 1 + L_in);

% ====================== YOUR CODE HERE ======================
% Instructions: Initialize W randomly so that we break the symmetry while
%               training the neural network.
%
% Note: The first column of W corresponds to the parameters for the bias unit
%

epsilon_init = 0.12;

W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;

% =========================================================================

end

nnCostFunction.m

function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 
% 
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);
         
% You need to return the following variables correctly 
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
%               following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
%         variable J. After implementing Part 1, you can verify that your
%         cost function computation is correct by verifying the cost
%         computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
%         Theta1_grad and Theta2_grad. You should return the partial derivatives of
%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
%         Theta2_grad, respectively. After implementing Part 2, you can check
%         that your implementation is correct by running checkNNGradients
%
%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.
%
%         Hint: We recommend implementing backpropagation using a for-loop
%               over the training examples if you are implementing it for the 
%               first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
%         Hint: You can implement this around the code for
%               backpropagation. That is, you can compute the gradients for
%               the regularization separately and then add them to Theta1_grad
%               and Theta2_grad from Part 2.
%
% part 1  
  
% Theta1 has size 25 x 401  
% Theta2 has size 10 x 26  

h = eye(num_labels);
y = h(y,:); %5000x10  这两条语句的意义在将y中的值变为0-1表示
a1 = [ones(m, 1) X];      %5000x401  
z2 = a1 * Theta1' ;  
a2 = sigmoid(z2);           
n = size(a2,1);  
a2 = [ones(n, 1) a2] ;    %5000x26  
a3 = sigmoid(a2 * Theta2'); %5000x10  
J = sum( sum( -y.* log(a3) -  (1-y).*log(1-a3) ))/ m;  
% pay attention :" Theta1(:,2:end) " , no "Theta1" .  
regularized = lambda/(2*m) * (sum(sum(Theta1(:,2:end).^2)) + sum(sum(Theta2(:,2:end).^2)) );  
J = J + regularized;  


%part2

delta3 = a3 - y;  %5000*10
delta2 = delta3 * Theta2;  %5000*26
delta2 = delta2(:, 2 : end);
delta2 = delta2 .* sigmoidGradient(z2);  %5000*25

Delta_1 = zeros(size(Theta1));
Delta_2 = zeros(size(Theta2));

Delta_1 = Delta_1 + delta2' * a1;
Delta_2 = Delta_2 + delta3' * a2;

Theta1_grad = ((1 / m) * Delta_1) + ((lambda / m) * Theta1); 
Theta2_grad = ((1 / m) * Delta_2) + ((lambda / m) * Theta2);

Theta1_grad(:, 1) = Theta1_grad(:, 1) - ((lambda / m) * (Theta1(:, 1)));
Theta2_grad(:, 1) = Theta2_grad(:, 1) - ((lambda / m) * (Theta2(:, 1)));  %这两行语句代表...
%Theta1_grad, Theta2_grad中第一列theta值不需要正则化
% -------------------------------------------------------------

% =========================================================================

% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];


end

坚持。

By 信念

 类似资料: