function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
diff = X * theta - y;
regu = lambda * theta(2:end)' * theta(2:end);
J = (diff' * diff + regu) / (2 * m);
grad = (X' * diff + lambda * [0; theta(2:end)]) / m;
grad = grad(:);
end
function [error_train, error_val] = ...
learningCurve(X, y, Xval, yval, lambda)
% Number of training examples
m = size(X, 1);
% You need to return these values correctly
error_train = zeros(m, 1);
error_val = zeros(m, 1);
for i = 1:m
theta = trainLinearReg(X(1:i, :), y(1:i), lambda);
error_train(i) = linearRegCostFunction(X(1:i, :), y(1:i), theta, 0);
% for the cross validation error,you should compute it over the entire cross validation set.
error_val(i) = linearRegCostFunction(Xval, yval, theta, 0);
end
end
function [lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval)
% Selected values of lambda (you should not change this)
lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';
% You need to return these variables correctly.
error_train = zeros(length(lambda_vec), 1);
error_val = zeros(length(lambda_vec), 1);
for i =1:length(lambda_vec)
lambda = lambda_vec(i);
theta = trainLinearReg(X, y, lambda);
error_train(i) = linearRegCostFunction(X, y, theta, 0);
error_val(i) = linearRegCostFunction(Xval, yval, theta, 0);
end
end