本文将对论文Towards End-to-End Lane Detection: an Instance Segmentation Approach进行解读。这篇论文是于2018年2月挂在arxiv上的。
当今很多车都带有辅助驾驶员的驾驶的功能,比如车道保持功能。该功能能使车辆保持在车道间的适当位置,这个功能对于有潜在车道偏离或者自动驾驶中的轨迹规划和决策都至关重要。传统的车道检测方法依赖于高度定义化,手工特征提取和启发式方法,通常是需要后处理技术,而这往往会使得计算量大,不利于道路场景多变下的应用扩展。最近越来越多的方法是借助深度学习建模,为像素级的车道分割做训练,即使当在大的感受野中并无车道标记的存在。尽管这类方法有他们的优势,但他们受限于检测一个预训练的,固定数量的车道线(比如本车道)问题,且无法处理车道变化。 本文,我们突破了前面提到的限制,将车道检测问题转为实例分割问题,从而每个车道线各自形成一个实例,这样就能够实现端到端的训练了。在分割车道线用于拟合车道之前,我们进一步提出采用一个已学习好的透视变换,在图像上做这种调整,与固定的鸟瞰图做对比。通过这么做,我们确保在道路平面变化下的车道线拟合的鲁棒性,不同于现有依赖于固定的且预先定义的透视变换矩阵的方法。总结就是,我们提出了一种快速车道检测的算法,运行帧率达50fps,能够处理多数车道和车道变换。本算法在tuSimple数据集中验证过且取得较有优势的结果。
主要贡献是两点,一个是利用Semantic Instance Segmentatio