awesome-pretrained-chinese-nlp-models
略。
一文看懂从BERT到ALBERT
文献阅读笔记:NEZHA
我一直在尝试与斯坦福核心NLP合作。我希望训练我自己的NER模型。从论坛上的SO和官网上描述了如何使用一个属性文件来实现这一点。我将如何通过API实现它?。 怎么做
在之前的描述中,我们通常把机器学习模型和训练算法当作黑箱子来处理。如果你实践过前几章的一些示例,你惊奇的发现你可以优化回归系统,改进数字图像的分类器,你甚至可以零基础搭建一个垃圾邮件的分类器,但是你却对它们内部的工作流程一无所知。事实上,许多场合你都不需要知道这些黑箱子的内部有什么,干了什么。 然而,如果你对其内部的工作流程有一定了解的话,当面对一个机器学习任务时候,这些理论可以帮助你快速的找到恰
我希望使用AWS Sagemaker工作流部署一个预训练的模型,用于实时行人和/或车辆检测,我特别想使用Sagemaker Neo编译模型并将其部署在边缘。我想从他们的模型动物园中使用OpenVino的预构建模型之一,但是当我下载模型时,它已经是他们自己的优化器的中间表示(IR)格式。 > 如果没有,是否有任何免费的预训练模型(使用任何流行的框架,如pytorch,tenorflow,ONXX等)
本文向大家介绍Keras使用ImageNet上预训练的模型方式,包括了Keras使用ImageNet上预训练的模型方式的使用技巧和注意事项,需要的朋友参考一下 我就废话不多说了,大家还是直接看代码吧! 在以上代码中,我们首先import各种模型对应的module,然后load模型,并用ImageNet的参数初始化模型的参数。 如果不想使用ImageNet上预训练到的权重初始话模型,可以将各语句的中
我已经在AWS SageMaker上使用内置算法语义分割训练了一个模型。这个名为model.tar.gz的训练模型存储在S3上。所以我想从S3下载这个文件,然后使用它在我的本地电脑上进行推断,而不使用AWS SageMaker。 以下是三个文件: > :包括网络架构、数据输入和训练的参数。请参阅语义分割超参数。 我的代码: 错误:
错误为: 谁能帮帮我吗?
最近,我一直在尝试用斯坦福核心NLP来训练n-gram实体。我遵循了以下教程--http://nlp.stanford.edu/software/crf-faq.shtml#b 这样,我就可以只指定unigram标记和它所属的类。有谁能引导我,让我把它延伸到n克。我正试图从聊天数据集中提取像电影名称这样的已知实体。 如果我误解了斯坦福教程,请指导我,同样的教程可以用于N克培训。