Low-level任务:常见的包括 Super-Resolution,denoise, deblur, dehze, low-light enhancement, deartifacts等。简单来说,是把特定降质下的图片还原成好看的图像,现在基本上用end-to-end的模型来学习这类 ill-posed问题的求解过程,客观指标主要是PSNR,SSIM,大家指标都刷的很高。目前面临以下几点问题:
High-level任务:分类,检测,分割等。一般公开训练数据都是高品质的图像,当送入降质图像时,性能会有下降,即使网络已经经过大量的数据增强(形状,亮度,色度等变换)
真实应用场景是不可能像训练集那样完美的,采集图像的过程中会面临各种降质问题,需要两者来结合。简单来说,结合的方式分为以下几种