Spark:对于提交命令的理解:
https://blog.csdn.net/weixin_38750084/article/details/106973247
spark-submit 可以提交任务到 spark 集群执行,也可以提交到 hadoop 的 yarn 集群执行。
util:
import org.apache.spark.serializer.KryoSerializer
import org.apache.spark.sql.SparkSession
object SparkContextUtil {
/**
* 封装创建sparkContext实例
*
* @param appName
* @param params
* @return
*/
def createSparkContext(appName: String, params: Map[String, String] = Map.empty) = {
// 入口
val spark: SparkSession = SparkSession.builder()
.appName(appName)
.config("spark.sql.warehouse.dir", "/user/hive/warehouse")
.master("local[*]")
.config("spark.serializer",classOf[KryoSerializer].getName)
.config("spark.debug.maxToStringFields", "100")
.enableHiveSupport().getOrCreate()
// 封装用户传递进来的参数
params.foreach { case (key, value) => spark.conf.set(key, value) }
spark
}
}
使用:
object BusinessDataCombineErpJobs {
Logger.getLogger("org").setLevel(Level.WARN)
val logger = LoggerFactory.getLogger(BusinessDataCombineErpJobs.getClass.getSimpleName)
def main(args: Array[String]): Unit = {
val spark = SparkContextUtil.createSparkContext(TestSparkSql.getClass.getSimpleName)
//返回基础sparkContext,用于创建RDD以及管理群集资源
val sc = spark.sparkContext
println("---数据处理开始---")
test(spark)
println("---数据处理结束---")
spark.close()
}
}
一个最简单的例子,部署 spark standalone 模式后,提交到本地执行。
./bin/spark-submit \
--master spark://localhost:7077 \
examples/src/main/python/pi.py
如果部署 hadoop,并且启动 yarn 后,spark 提交到 yarn 执行的例子如下。
注意,spark 必须编译成支持 yarn 模式,编译 spark 的命令为:
build/mvn -Pyarn -Phadoop-2.x -Dhadoop.version=2.x.x -DskipTests clean package
其中, 2.x 为 hadoop 的版本号。编译完成后,可执行下面的命令,提交任务到 hadoop yarn 集群执行。
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 1 \
--queue thequeue \
examples/target/scala-2.11/jars/spark-examples*.jar 10
注意:后边的数字10是传入的一个参数
线上实操:
spark2-submit --class bi.tag.TSimilarTagsTable --master yarn-client --executor-memory 6G --num-executors 5 --executor-cores 2 /var/lib/hadoop-hdfs/seijing/ble/tag/spark-sql/pf-spark-master/pi/target/pi-1.0.1-SNAPSHOT.jar
spark2-submit --class resume.mlib.RcoAID \
--master yarn \
--deploy-mode client \
--num-executors 4 \
--executor-memory 10G \
--executor-cores 3 \
--driver-memory 10g \
--conf "spark.executor.extraJavaOptions='-Xss512m'" \
--driver-java-options "-Xss512m" \
/var/lib/hadoop-hdfs/als_ecommend/reserver-1.0-SNAPSHOT.jar $1 $2 >> /var/lib/hadoop-hdfs/als_ecommend/logs/log_spark_out_`date +\%Y\%m\%d`.log
注意:
(1)
$1 $2 是 上一层,执行这个脚本传进来的参数
如:
/bin/bash /root/combine.sh aa bb
aa bb 就是传入的参数
(2)
最后打印出的日志格式为:
-rw-r--r-- 1 root root 2375 Feb 27 15:25 log_spark_out_20200227.log
-rw-r--r-- 1 root root 712272 Feb 28 17:03 log_spark_out_20200228.log
-rw-r--r-- 1 root root 2375 Mar 9 15:36 log_spark_out_20200309.log
-rw-r--r-- 1 root root 712463 Mar 10 20:24 log_spark_out_20200310.log
-rw-r--r-- 1 root root 10578 Mar 12 18:51 log_spark_out_20200312.log
-rw-r--r-- 1 root root 468018 Mar 13 10:06 log_spark_out_20200313.log
-rw-r--r-- 1 root root 712602 Mar 19 18:26 log_spark_out_20200319.log
只有print的,以及DF show 这样的日志才会存储到日志文件中。
logger打印的日志在控制台运行任务时可以看到,但是并不能存储到日志文件中。
参数名 | 参数说明 |
--master | master 的地址,提交任务到哪里执行,例如 spark://host:port, yarn, local |
--deploy-mode | 在本地 (client) 启动 driver 或在 cluster 上启动,默认是 client |
--class | 应用程序的主类,仅针对 java 或 scala 应用 |
--name | 应用程序的名称 |
--jars | 用逗号分隔的本地 jar 包,设置后,这些 jar 将包含在 driver 和 executor 的 classpath 下 |
--packages | 包含在driver 和executor 的 classpath 中的 jar 的 maven 坐标 |
--exclude-packages | 为了避免冲突 而指定不包含的 package |
--repositories | 远程 repository |
--conf PROP=VALUE | 指定 spark 配置属性的值, 例如 -conf spark.executor.extraJavaOptions="-XX:MaxPermSize=256m" |
--properties-file | 加载的配置文件,默认为 conf/spark-defaults.conf |
--driver-memory | Driver内存,默认 1G |
--driver-java-options | 传给 driver 的额外的 Java 选项 |
--driver-library-path | 传给 driver 的额外的库路径 |
--driver-class-path | 传给 driver 的额外的类路径 |
--driver-cores | Driver 的核数,默认是1。在 yarn 或者 standalone 下使用 |
--executor-memory | 每个 executor 的内存,默认是1G |
--total-executor-cores | 所有 executor 总共的核数。仅仅在 mesos 或者 standalone 下使用 |
--num-executors | 启动的 executor 数量。默认为2。在 yarn 下使用 |
--executor-core | 每个 executor 的核数。在yarn或者standalone下使用 |
yarn-client模式跑任务无异常(代码配置中配置了.master("local[*]"))
脚本为:
spark2-submit \
--class bi.tag.BusinessDataCombineErpJobs \
--master yarn-client \
--executor-memory 3G \
--num-executors 5 \
--executor-cores 2 \
/var/business_data/p-1.0.1-SNAPSHOT.jar > /var/business_data/business_data.log
代码中去掉.master("local[*]"),任务依然可以跑成功。
但是代码中存在.master("local[*]")参数的情况下,我直接把脚本改为:
--master yarn \
--deploy-mode cluster \
报错了
spark2-submit \
--class bi.tag.BusinessDataCombineErpJobs \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 3g \
--executor-cores 2 \
/var/business_data/p-1.0.1-SNAPSHOT.jar 10
注意:数字10 是代码BusinessDataCombineErpJobs 中自定义的传入的一个参数
报错日志为:
azkaban:
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - 20/05/28 15:04:20 INFO yarn.Client: Application report for application_1583730534669_117324 (state: FAILED)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - 20/05/28 15:04:20 INFO yarn.Client:
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - client token: N/A
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - diagnostics: Application application_1583730534669_117324 failed 2 times due to AM Container for appattempt_1583730534669_117324_000002 exited with exitCode: 13
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - For more detailed output, check application tracking page:http://pf-bigdata4:8088/proxy/application_1583730534669_117324/Then, click on links to logs of each attempt.
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - Diagnostics: Exception from container-launch.
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - Container id: container_e87_1583730534669_117324_02_000001
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - Exit code: 13
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - Stack trace: ExitCodeException exitCode=13:
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.hadoop.util.Shell.runCommand(Shell.java:604)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.hadoop.util.Shell.run(Shell.java:507)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:789)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:213)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at java.util.concurrent.FutureTask.run(FutureTask.java:266)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at java.lang.Thread.run(Thread.java:748)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO -
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO -
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - Container exited with a non-zero exit code 13
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - Failing this attempt. Failing the application.
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - ApplicationMaster host: N/A
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - ApplicationMaster RPC port: -1
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - queue: default
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - start time: 1590649410241
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - final status: FAILED
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - tracking URL: http://pf-bigdata4:8088/cluster/app/application_1583730534669_117324
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - user: root
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - Exception in thread "main" org.apache.spark.SparkException: Application application_1583730534669_117324 finished with failed status
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.spark.deploy.yarn.Client.run(Client.scala:1153)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.spark.deploy.yarn.YarnClusterApplication.start(Client.scala:1568)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:892)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:197)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:227)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:136)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - 20/05/28 15:04:20 INFO util.ShutdownHookManager: Shutdown hook called
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - 20/05/28 15:04:20 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-eb1e1b60-ef09-4a58-8e5f-dc988411999e
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - 20/05/28 15:04:20 INFO util.ShutdownHookManager: Deleting directory /huayong/data/tmp/spark-dba79ec3-1f27-4da0-8e8e-5a98c31c156f
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - Process completed unsuccessfully in 55 seconds.
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine ERROR - Job run failed!
java.lang.RuntimeException: azkaban.jobExecutor.utils.process.ProcessFailureException: Process exited with code 1
at azkaban.jobExecutor.ProcessJob.run(ProcessJob.java:305)
at azkaban.execapp.JobRunner.runJob(JobRunner.java:787)
at azkaban.execapp.JobRunner.doRun(JobRunner.java:602)
at azkaban.execapp.JobRunner.run(JobRunner.java:563)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: azkaban.jobExecutor.utils.process.ProcessFailureException: Process exited with code 1
at azkaban.jobExecutor.utils.process.AzkabanProcess.run(AzkabanProcess.java:125)
at azkaban.jobExecutor.ProcessJob.run(ProcessJob.java:297)
... 8 more
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine ERROR - azkaban.jobExecutor.utils.process.ProcessFailureException: Process exited with code 1 cause: azkaban.jobExecutor.utils.process.ProcessFailureException: Process exited with code 1
28-05-2020 15:04:20 CST bi_cal_business_data_table_combine INFO - Finishing job bi_cal_business_data_table_combine at 1590649460777 with status FAILED
yarn logs -applicationId application_1583730534669_117324命令查看日志为:
20/05/28 15:04:17 WARN lazy.LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
20/05/28 15:04:17 WARN lazy.LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
20/05/28 15:04:19 ERROR yarn.ApplicationMaster: Uncaught exception:
java.lang.IllegalStateException: User did not initialize spark context!
at org.apache.spark.deploy.yarn.ApplicationMaster.runDriver(ApplicationMaster.scala:467)
at org.apache.spark.deploy.yarn.ApplicationMaster.org$apache$spark$deploy$yarn$ApplicationMaster$$runImpl(ApplicationMaster.scala:301)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$run$1.apply$mcV$sp(ApplicationMaster.scala:241)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$run$1.apply(ApplicationMaster.scala:241)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$run$1.apply(ApplicationMaster.scala:241)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$3.run(ApplicationMaster.scala:782)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1917)
at org.apache.spark.deploy.yarn.ApplicationMaster.doAsUser(ApplicationMaster.scala:781)
at org.apache.spark.deploy.yarn.ApplicationMaster.run(ApplicationMaster.scala:240)
at org.apache.spark.deploy.yarn.ApplicationMaster$.main(ApplicationMaster.scala:806)
at org.apache.spark.deploy.yarn.ApplicationMaster.main(ApplicationMaster.scala)
脚本最后一行的自定义的传参的参数 10去掉,依然上面的错。
但是代码中把.master("local[*]"去掉后,使用client和cluster模式,都可以跑成功。
总结:
1.代码中local[*]参数去掉后,两种模式都可以跑成功,不去掉,只能跑client模式
2.cluster模式是在集群跑任务,使用的是集群随机一台机器的资源,而client模式是在提交任务的这台机器上跑,使用的是这台机器的资源
3.没问题的脚本:
client:
spark2-submit \
--class bi.tag.BusinessDataCombineErpJobs \
--master yarn-client \
--driver-memory 1g \
--executor-memory 3g \
--executor-cores 2 \
/var/business_data/pi-1.0.1-SNAPSHOT-yarn-cluster.jar
cluster:
spark2-submit \
--class bi.tag.BusinessDataCombineErpJobs \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 3g \
--executor-cores 2 \
/var/business_data/pi-1.0.1-SNAPSHOT-yarn-cluster.jar
sparkstreaming的提交示例:
spark2-submit --master yarn-client --conf spark.driver.memory=2g --class com.tzb.sparkstreaming.prod.DataChangeStreaming --executor-memory 8G --num-executors 5 --executor-cores 2 /test/spark-test-jar-with-dependencies.jar >> /test/sparkstreaming_datachange.log
参考:
https://www.cnblogs.com/weiweifeng/p/8073553.html