Description
Given n
kinds of items, and each kind of item has an infinite number available. The i-th
item has size A[i]
and value V[i]
.
Also given a backpack with size m
. What is the maximum value you can put into the backpack?
m
.Example
Example 1:
Input: A = [2, 3, 5, 7], V = [1, 5, 2, 4], m = 10
Output: 15
Explanation: Put three item 1 (A[1] = 3, V[1] = 5) into backpack.
Example 2:
Input: A = [1, 2, 3], V = [1, 2, 3], m = 5
Output: 5
Explanation: Strategy is not unique. For example, put five item 0 (A[0] = 1, V[0] = 1) into backpack.
思路:跟backpackII类似:
跟背包I类似,f[i][j]表示前i种物品组成重量为j的pack的总value是多少;我们还是从A[i-1] 能否进入pack来考虑
f[i][j] = Max( f[i-1][j] (不进去), (进去)f[i-1][j - k * A[i-1]] + k*V[i-1] ,前提条件是: j -A[i-1] >=0 && f[i-1][j- k * A[i-1]] != -1;
public class Solution {
/**
* @param A: an integer array
* @param V: an integer array
* @param m: An integer
* @return: an array
*/
public int backPackIII(int[] A, int[] V, int m) {
int n = A.length;
int[][] dp = new int[n + 1][m + 1];
for(int i = 0; i <= n; i++) {
Arrays.fill(dp[i], -1);
}
int maxres = 0;
for(int i = 0; i <= n; i++) {
for(int j = 0; j <= m; j++) {
if(i == 0 || j == 0) {
dp[i][j] = 0;
} else {
dp[i][j] = dp[i - 1][j];
for(int k = 0; j - k * A[i - 1] >= 0; k++) {
if(dp[i - 1][j - k * A[i - 1]] != -1) {
dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - k * A[i - 1]] + k* V[i - 1]);
}
}
}
maxres = Math.max(maxres, dp[i][j]);
}
}
return maxres;
}
}