题目描述
Tak has N cards. On the i-th (1≤i≤N) card is written an integer xi. He is selecting one or more cards from these N cards, so that the average of the integers written on the selected cards is exactly A. In how many ways can he make his selection?
Constraints
1≤N≤50
1≤A≤50
1≤xi≤50
N,A,xi are integers.
Partial Score
200 points will be awarded for passing the test set satisfying 1≤N≤16.
输入
The input is given from Standard Input in the following format:
N A
x1 x2 … xN
输出
Print the number of ways to select cards such that the average of the written integers is exactly A.
样例输入
4 8
7 9 8 9
样例输出
5
提示
The following are the 5 ways to select cards such that the average is 8:
Select the 3-rd card.
Select the 1-st and 2-nd cards.
Select the 1-st and 4-th cards.
Select the 1-st, 2-nd and 3-rd cards.
Select the 1-st, 3-rd and 4-th cards.
题意
给你N
张卡片,每个卡片有一个权值,然你选任意多张卡片(不能为0),使得这些卡片权值的平均值严格等于A,问你有多少种选法。
思路:
先将题目的平均数转化为i个数的和是A的i倍。如此之后就可以考虑用动态规划的方法来求解。因为数据范围小,所以从小到大枚举计算,最后找出倍数。
dp[i][k] 的含义是前i的数和为k的个数。
代码
int main() {
while (cin >> n >> A) {
ans = 0;
mem(dp, 0);
for (int i = 1; i <= n; ++i)
cin >> a[i];
dp[0][0] = 1;
for (int i = 1; i <= n; ++i) {
int x = a[i];
for (int j = i - 1; j >= 0; --j)// 分别加1个,2.。。i-1 个 两两组合的个数,只不过前边有记录
for (int k = 0; k <= 55 * j; k++) //枚举与前边数的和因为最大的和也就是j个55
dp[j + 1][k + x] += dp[j][k]; // 如果前边有 dp[j][k] 个数只要 k+x == A 那么 dp[j+1][A] = dp[j][k]
}
for (int i = 1; i <= n; ++i)
ans += dp[i][A * i]; //当所有的数均是A是倍数是最大有效的
cout << ans << endl;
}
return 0;
}