题意
给定n和k个区间,每个区间都不想相交,在每一个位置(p)都可以从任意一个区间拿出一个属于这个区间的数(d)然后跳转到p+d位置,但是位置不能超过n。从1开始到达n有多少种方法。
需要利用前缀和进行优化。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <stack>
#include <map>
#include <sstream>
#include <cstring>
#include <set>
#include <cctype>
#include <list>
#include <bitset>
#define IO \
ios::sync_with_stdio(false); \
// cin.tie(0); \
// cout.tie(0);
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int maxn = 1e6 + 100;
const int maxm = 1e6 + 10;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int inf = 0x3f3f3f3f;
const LL mod = 998244353;
// int dis[8][2] = {0, 1, 1, 0, 0, -1, -1, 0, 1, -1, 1, 1, -1, 1, -1, -1};
int L[15], R[15];
LL sum[maxn];
LL dp[maxn];
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
#endif
IO;
LL n, k;
cin >> n >> k;
for (int i = 1; i <= k; i++)
cin >> L[i] >> R[i];
dp[1] = 1;
sum[1] = 1;
for (int i = 2; i <= n; i++)
{
for (int j = 1; j <= k; j++)
{
int l = L[j], r = R[j];
dp[i] = (dp[i] + sum[max(0, i - l)] - sum[max(0, i - r - 1)] + mod) % mod;
}
sum[i] = (sum[i - 1] + dp[i]) % mod;
}
cout << dp[n] % mod;
return 0;
}