https://zhuanlan.zhihu.com/p/64627590
Quick select算法通常用来在未排序的数组中寻找第k小/第k大的元素
总体而言,Quick select采用和Quick sort类似的步骤。首先选定一个pivot,然后根据每个数字与该pivot的大小关系将整个数组分为两部分。那么与Quick sort不同的是,Quick select只考虑所寻找的目标所在的那一部分子数组,而非像Quick sort一样分别再对两边进行分割。正是因为如此,Quick select将平均时间复杂度从O(nlogn)降到了O(n)。
public class Solution {
public int findKthSmallest(int[] nums, int k) {
if (nums == null || nums.length == 0) {
return Integer.MIN_VALUE;
}
int len = nums.length;
return quickSelect(nums, k, 0, len - 1);
}
private int quickSelect(int[] nums, int k, int start, int end) {
//Choose a pivot randomly
Random rand = new Random();
int index = rand.nextInt(end - start + 1) + start;
int pivot = nums[index];
swap(nums, index, end);
int left = start, right = end;
while(left < right) {
if (nums[left++] >= pivot) {
swap(nums, --left, --right);
}
}
//left is now pointing to the first number that is greater than or equal to the pivot
swap(nums, left, end);
//m is the number of numbers that is smaller than pivot
int m = left - start;
if (m == k - 1) { //in order to find the kth smallest number, there must be k - 1 number smaller than it
return pivot;
}
else if (k <= m) { //target is in the left subarray
return quickSelect(nums, k, start, left - 1);
}
else {
//target is in the right subarray, but need to update k
//Since we have discarded m numbers smaller than it which is in the right subarray
return quickSelect(nums, k - m, left, end);
}
}
private void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
}