本文是源码分析类文章
如何为Compose Image提供网络图片加载支持?目前(Compose 1.0.5)最好的选择是使用图片框架Coil,Coil对Jetpack Compose相关的支持文档在这。
Compose内的Image组件类似于ImageView,仅支持从本地加载图片资源,要想从网络中获取图片并加载,我们首先就得要使用能够处理网络请求的框架,将远程图片资源载入到本地才行。目前主流的图片加载框架Picasso、Glide、Coil等,它们更多面对的仍是传统的View系统下,将图片加载到ImageView中并显示这样的应用场景,而不是为Compose量身打造的,基于此,Accompanist库曾提供了一些图片加载框架的扩展库,为Compose的Image显示网络图片进行简便支持。时过境迁,后来Coil为Image加载图片提供了相关支持,故Accompanist以前关于图片加载框架扩展的依赖都被废弃并不推荐使用了。
接下来我们将分析Accompanist曾经是如何对图片框架做扩展适配,使之能够与Compose配合工作的。
Accompanist在0.3.0版本就提供了Picasso的支持,不过,在版本0.7.0该集成被移除(相关的pull参见https://github.com/google/accompanist/pull/253)
在0.6.2版本中,想要加载网络图片,你可能会使用如下代码:
PicassoImage(
data = "http://..."
modifier = Modifier.size(50.dp),
) { imageLoadState ->
when(imageLoadState) {
...
}
}
CoilImage(
data = "https://i.imgur.com/StXm8nf.jpg",
contentDescription = null,
onRequestCompleted = {
println("LoadingCoilImage onRequestCompleted $it")
},
contentScale = ContentScale.Crop,
modifier = Modifier.fillMaxWidth(),
) {
...
}
在version 0.6.2中,加载远程图片的方法是使用专用的Image组件,使用Picasso框架的调用PicassoImage,使用Coil的则调用CoilImage,等等。它们都依赖于一个imageloader-core的核心库来进行图片加载,我们不难想象这个加载图片的方法,为了糅合各类框架,肯定要用不少泛型,事实上它长下面这样:
@Composable
fun <R : Any, TR : Any> ImageLoad(
request: R,
executeRequest: suspend (TR) -> ImageLoadState,
modifier: Modifier = Modifier,
requestKey: Any = request,
transformRequestForSize: (R, IntSize) -> TR?,
shouldRefetchOnSizeChange: (currentResult: ImageLoadState, size: IntSize) -> Boolean = DefaultRefetchOnSizeChangeLambda,
onRequestCompleted: (ImageLoadState) -> Unit = EmptyRequestCompleteLambda,
content: @Composable BoxScope.(imageLoadState: ImageLoadState) -> Unit
) {
...
}
泛型R代表请求的值,这个值之所以是泛型,是因为实际上各种框架都支持多类型的图片加载请求,这个请求可能是基于一个URL的String,也可能单纯是一个resource的id,或者就是一个Bitmap,等等。泛型TR代表了不同图片框架内收集本次图片请求信息的实体类(或者是Builder),在Picasso中这个类叫RequestCreator,在Glide中这个类叫RequestBuilder。
我们继续观察它的实现:
@Composable
fun <R : Any, TR : Any> ImageLoad(
request: R,
executeRequest: suspend (TR) -> ImageLoadState,
modifier: Modifier = Modifier,
requestKey: Any = request,
transformRequestForSize: (R, IntSize) -> TR?,
shouldRefetchOnSizeChange: (currentResult: ImageLoadState, size: IntSize) -> Boolean = DefaultRefetchOnSizeChangeLambda,
onRequestCompleted: (ImageLoadState) -> Unit = EmptyRequestCompleteLambda,
content: @Composable BoxScope.(imageLoadState: ImageLoadState) -> Unit
) {
// 三个rememberUpdatedState,目的是为了避免更改后重组
val updatedOnRequestCompleted by rememberUpdatedState(onRequestCompleted)
val updatedTransformRequestForSize by rememberUpdatedState(transformRequestForSize)
val updatedExecuteRequest by rememberUpdatedState(executeRequest)
// 这个state拿来缓存控件大小,因为控件大小要等到Compose内容传入constraints才能确定
var requestSize by remember(requestKey) { mutableStateOf<IntSize?>(null) }
// 重点,这里使用produceState将executeRequest返回的非Compose状态转换为一个State
// 之所以连加载图片的过程都抽象成一个叫executeRequest的lambda,还是因为要糅合多个框架
val loadState by produceState<ImageLoadState>(
initialValue = ImageLoadState.Loading,
key1 = requestKey,
key2 = requestSize,
) {
// value一开始肯定被赋值为ImageLoadState.Loading,因为requestSize为空。
// 当requestSize被赋值后,首先将开始执行transformRequestForSize这个lambda
// 传入原来的request和新获得的size,要求返回一个类似RequestBuilder的结果
value = requestSize?.let { updatedTransformRequestForSize(request, it) }
?.let { transformedRequest ->
// 这里传入刚才的RequestBuilder
try {
// 发起图片加载请求,这里可能会挂起
updatedExecuteRequest(transformedRequest)
} catch (e: CancellationException) {
// We specifically don't do anything for the request coroutine being
// cancelled: https://github.com/google/accompanist/issues/217
// 如果我们响应了协程的CancellationException,让ImageLoadState变成了Error
// 有可能会出问题,因为如果取消的协程在新协程完成后执行,
// 会导致新的图片状态(Success)被上次取消的结果(Error)覆盖
throw e
} catch (e: Error) {
// Re-throw all Errors
throw e
} catch (e: IllegalStateException) {
// Re-throw all IllegalStateExceptions
throw e
} catch (t: Throwable) {
// Anything else, we wrap in a Error state instance
// 除了CancellationException、Error、IllegalStateException之外,
// 其余的错误将会令状态转变为Error
ImageLoadState.Error(painter = null, throwable = t)
// also内,加载完成,回调onRequestCompleted
}.also(updatedOnRequestCompleted)
} ?: ImageLoadState.Loading
}
BoxWithConstraints(
modifier = modifier,
propagateMinConstraints = true,
) {
val size = IntSize(
width = if (constraints.hasBoundedWidth) constraints.maxWidth else -1,
height = if (constraints.hasBoundedHeight) constraints.maxHeight else -1
)
if (requestSize == null ||
(requestSize != size && shouldRefetchOnSizeChange(loadState, size))
) {
requestSize = size
}
content(loadState)
}
}
ImageLoad的思路清晰明了:调用方告诉它如何build一个请求,并在使用图片框架的过程中产生ImageLoadState状态,它会把ImageLoadState转换为可以观察的State<ImageLoadState>
。
直接使用通用实现的缺点在于会产生很多模板代码,可以基于通用实现进行更简洁的封装,我们以特定的PicassoImage的实现为例进行分析:
// 这个API封装更彻底,不需要写when(state),直接在函数中传入error、loading的内容即可
@Composable
fun PicassoImage(
data: Any,
contentDescription: String?,
modifier: Modifier = Modifier,
alignment: Alignment = Alignment.Center,
contentScale: ContentScale = ContentScale.Fit,
colorFilter: ColorFilter? = null,
fadeIn: Boolean = false,
picasso: Picasso = LocalPicasso.current,
requestBuilder: (RequestCreator.(size: IntSize) -> RequestCreator)? = null,
shouldRefetchOnSizeChange: (currentResult: ImageLoadState, size: IntSize) -> Boolean = DefaultRefetchOnSizeChangeLambda,
onRequestCompleted: (ImageLoadState) -> Unit = EmptyRequestCompleteLambda,
error: @Composable (BoxScope.(ImageLoadState.Error) -> Unit)? = null,
loading: @Composable (BoxScope.() -> Unit)? = null,
) {
PicassoImage(
data = data,
modifier = modifier,
requestBuilder = requestBuilder,
picasso = picasso,
shouldRefetchOnSizeChange = shouldRefetchOnSizeChange,
onRequestCompleted = onRequestCompleted,
) { imageState ->
when (imageState) {
is ImageLoadState.Success -> {
// MaterialLoadingImage是0.6.2版本中存在的一个实现fadeIn效果的控件
// 原理是使用Compose动画中的Transition托管三个动画
// alpha(透明度),brightness(亮度),saturation(饱和度),
// 同时修改传入Image内的colorFliter的这三个值,从而实现渐入效果
MaterialLoadingImage(
result = imageState,
contentDescription = contentDescription,
fadeInEnabled = fadeIn,
alignment = alignment,
contentScale = contentScale,
colorFilter = colorFilter
)
}
is ImageLoadState.Error -> if (error != null) error(imageState)
ImageLoadState.Loading -> if (loading != null) loading()
ImageLoadState.Empty -> Unit
}
}
}
@Composable
fun PicassoImage(
data: Any,
modifier: Modifier = Modifier,
picasso: Picasso = LocalPicasso.current,
requestBuilder: (RequestCreator.(size: IntSize) -> RequestCreator)? = null,
shouldRefetchOnSizeChange: (currentResult: ImageLoadState, size: IntSize) -> Boolean = DefaultRefetchOnSizeChangeLambda,
onRequestCompleted: (ImageLoadState) -> Unit = EmptyRequestCompleteLambda,
content: @Composable BoxScope.(imageLoadState: ImageLoadState) -> Unit
) {
ImageLoad(
request = data.toRequestCreator(picasso),
requestKey = data, // Picasso RequestCreator doesn't support equality so we use the data
executeRequest = { r ->
@OptIn(ExperimentalCoroutinesApi::class)
suspendCancellableCoroutine { cont ->
// 初始化了一个Target,这个Target用来获取图片加载结果
val target = object : com.squareup.picasso.Target {
override fun onBitmapLoaded(bitmap: Bitmap, from: Picasso.LoadedFrom) {
val state = ImageLoadState.Success(
painter = BitmapPainter(bitmap.asImageBitmap()),
source = from.toDataSource()
)
// 协程恢复
cont.resume(state) {
// Not much we can do here. Ignore this
}
}
override fun onBitmapFailed(exception: Exception, errorDrawable: Drawable?) {
val state = ImageLoadState.Error(
throwable = exception,
painter = errorDrawable?.toPainter(),
)
// 协程恢复
cont.resume(state) {
// Not much we can do here. Ignore this
}
}
override fun onPrepareLoad(placeholder: Drawable?) = Unit
}
cont.invokeOnCancellation {
// 取消图片加载
picasso.cancelRequest(target)
}
// Now kick off the image load into our target
r.into(target)
}
},
transformRequestForSize = { r, size ->
val sizedRequest = when {
// 如果尺寸包含未指定尺寸的尺寸,我们不会在Coil请求中指定尺寸
size.width < 0 || size.height < 0 -> r
size != IntSize.Zero -> {
r.resize(size.width, size.height)
.centerInside()
.onlyScaleDown()
}
// Otherwise we have a zero size, so no point executing a request
// 未获得size,因此暂时无法生成请求
else -> null
}
// 根据参数来build请求
if (sizedRequest != null && requestBuilder != null) {
// If we have a transformed request and builder, let it run
requestBuilder(sizedRequest, size)
} else {
// Otherwise we just return the sizedRequest
sizedRequest
}
},
shouldRefetchOnSizeChange = shouldRefetchOnSizeChange,
onRequestCompleted = onRequestCompleted,
modifier = modifier,
content = content
)
}
现在让我们来总结一下,在0.6.2版本,实现网络图片加载的集成库思路如下:
updatedExecuteRequest(transformedRequest)
后挂起,直到这个lambda返回结果,State的值将会在结果返回后产生变化。当然,如果协程被取消,Picasso也会取消加载到Target那个图片请求。Transition
对ColorFliter的alpha,brightness,saturation进行动态修改,从而实现渐入动画。0.3.0版本诞生于2020年10月份,而当时间来到了2021年4月,Accompanist发布0.8.0版本,Coil 和 Glide 集成库进行了大规模的重构。上面提到的类似于CoilImage()
和GlideImage()
API都已经被弃用了。
以下对Glide集成库的分析基于版本0.13.0的代码。
如果在0.13.0版本想要加载远程图片,或许你会写出以下的代码:
Image(
painter = rememberGlidePainter(request = "http://..."),
contentDescription = null
)
新的API不再需要专门的Image组件,而是使用Painter这种概念来表现加载的结果。新的API对性能的提升似乎有所提升:Compose内容重组后,需要重绘的不再是不同的Loading组件或Success组件,现在核心组件一定是一个Image,随加载状态变化的只不过是Image内绘制的内容而已,重绘范围有所缩小。这很符合我们对ImageView的想象:在加载的时候显示一张placeholder占位图,成功显示最终结果,否则显示error图片,而placeholder和error都可以发起图片加载请求的时候设置。
Painter是一个什么样的概念?我们可以先看一下类注释是怎么介绍它的:
/**
* 对可以画出来的东西的抽象。除了能够绘制到指定的有界区域外,Painter还提供了一些高级机制,消费者可以使用
* 这些机制来配置内容的绘制方式。其中包括alpha、ColorFilter和RTL
* 实现应该提供一个有意义的equals方法来比较不同Painter子类的值,而不仅仅依赖于引用相等
*/
abstract class Painter {
...
protected abstract fun DrawScope.onDraw()
}
描述看起来有点像Drawable,但实际上Drawable比Painter更加复杂一些,除了上述的alpha、ColorFilter、LayoutDirection之外,Drawable还具有动画Callback、Level、Hotspot等属性。DrawScope.onDraw()
方法类似于Drawable的draw(Canvas canvas)
。
继续观察rememberGlidePainter的具体实现:
@Composable
fun rememberGlidePainter(
request: Any?,
requestManager: RequestManager = GlidePainterDefaults.defaultRequestManager(),
shouldRefetchOnSizeChange: ShouldRefetchOnSizeChange = ShouldRefetchOnSizeChange { _, _ -> false },
// 注意这里的requestBuilder,加载的结果类型已经被固定为drawable
requestBuilder: (RequestBuilder<Drawable>.(size: IntSize) -> RequestBuilder<Drawable>)? = null,
// 新的API也能开启fadeIn效果
fadeIn: Boolean = false,
fadeInDurationMs: Int = LoadPainterDefaults.FadeInTransitionDuration,
// 是不是很疑惑为什么这里有个占位图id的参数?Glide本身就支持占位图设置,
// 在Build Request的时候设置不就行了吗?其实这个参数是给Compose预览模式用的
@DrawableRes previewPlaceholder: Int = 0,
): LoadPainter<Any> {
// GlideLoader是加载逻辑实现类,稍后展示
val glideLoader = remember {
GlideLoader(requestManager, requestBuilder)
}.apply {
// 这里的逻辑并不是多余的,要知道如果key没有变化,remember函数会直接返回上次计算的结果,
// 这里想表达的是,对上次的结果调用apply,更新requestManager和requestBuilder
this.requestManager = requestManager
this.requestBuilder = requestBuilder
}
// rememberLoadPainter位于之前所说的imageloading-core的核心库
// 在0.13.0版本Coil和Glide都用到这个库来获取LoadPainter
return rememberLoadPainter(
loader = glideLoader,
request = checkData(request),
shouldRefetchOnSizeChange = shouldRefetchOnSizeChange,
fadeIn = fadeIn,
fadeInDurationMs = fadeInDurationMs,
previewPlaceholder = previewPlaceholder
)
}
// checkData检查了request的类型
private fun checkData(data: Any?): Any? {
when (data) {
is Drawable -> {
throw IllegalArgumentException(....)
}
is ImageBitmap -> {
throw IllegalArgumentException(....)
}
is ImageVector -> {
throw IllegalArgumentException(....)
}
is Painter -> {
throw IllegalArgumentException(....)
}
}
return data
}
imageloading-core这次如何抽象图片加载行为?我们先观察一下rememberLoadPainter
的参数列表:
@Composable
fun <R> rememberLoadPainter(
loader: Loader<R>,
request: R?,
shouldRefetchOnSizeChange: ShouldRefetchOnSizeChange,
fadeIn: Boolean = false,
fadeInDurationMs: Int = LoadPainterDefaults.FadeInTransitionDuration,
@DrawableRes previewPlaceholder: Int = 0,
): LoadPainter<R> {...}
@Stable
fun interface Loader<R> {
fun load(request: R, size: IntSize): Flow<ImageLoadState>
}
与0.6.2版本不同,加载逻辑实现类需要返回一个状态流Flow<ImageLoadState>
,而不再是单一的ImageLoadState
,虽然请求类型仍然是泛型的,但是已经不需要表达类似于RequestBuilder这样的泛型类型,如何构建、发起请求由Loader自己决定。
ImageLoadState的实现如下
sealed class ImageLoadState {
object Empty : ImageLoadState()
data class Loading(
val placeholder: Painter?,
val request: Any,
) : ImageLoadState()
data class Success(
val result: Painter,
val source: DataSource,
val request: Any,
) : ImageLoadState()
data class Error(
val request: Any,
val result: Painter? = null,
val throwable: Throwable? = null
) : ImageLoadState()
}
不难发现所有的图片加载结果都要求封装成Painter进行返回,但尴尬的是,Drawable与Painter并不是天生互通的类型(Compose 1.0.5只有三种Painter,BitmapPainter、VectorPainter、ColorPainter),好在Accompanist提供了一个DrawablePainter。不过话又说回来,为什么非得要求生产者Loader返回Painter不可呢?那是因为加载请求是多类型的,消费者LoadPainter其实无法确定生产者返回的结果的类型,自然也不确定如何绘制它,因此LoadPainter采用了类似于装饰者模式的设计,图片结果绘制交由State内的Painter完成。
GlideLoader
的实现如下:
internal class GlideLoader(
requestManager: RequestManager,
requestBuilder: (RequestBuilder<Drawable>.(size: IntSize) -> RequestBuilder<Drawable>)?,
) : Loader<Any> {
var requestManager by mutableStateOf(requestManager)
var requestBuilder by mutableStateOf(requestBuilder)
/**
* 不要删除callbackFlow上的显式类型<ImageLoadState>。IR编译器不喜欢隐式类型。
*/
@Suppress("RemoveExplicitTypeArguments")
@OptIn(ExperimentalCoroutinesApi::class)
override fun load(
request: Any,
size: IntSize
): Flow<ImageLoadState> = callbackFlow<ImageLoadState> {
var failException: Throwable? = null
// 这里同时使用Target与Listener两种机制来监听加载状态,并向flow发送对应状态
// Target并不会去处理Success的状态,Listener已经抢先处理并拦截了Target的Success调用
val target = object : EmptyCustomTarget(
if (size.width > 0) size.width else Target.SIZE_ORIGINAL,
if (size.height > 0) size.height else Target.SIZE_ORIGINAL
) {
override fun onLoadStarted(placeholder: Drawable?) {
trySendBlocking(
ImageLoadState.Loading(
placeholder = placeholder?.let(::DrawablePainter),
request = request
)
)
}
override fun onLoadFailed(errorDrawable: Drawable?) {
trySendBlocking(
ImageLoadState.Error(
result = errorDrawable?.let(::DrawablePainter),
request = request,
throwable = failException
?: IllegalArgumentException("Error while loading $request")
)
)
// Close the channel[Flow]
channel.close()
}
override fun onLoadCleared(resource: Drawable?) {
// Glide想要释放资源,所以我们需要清除结果,否则我们可能会绘制已经被回收的视图
trySendBlocking(ImageLoadState.Empty)
// Close the channel[Flow]
channel.close()
}
}
val listener = object : RequestListener<Drawable> {
override fun onResourceReady(
drawable: Drawable,
model: Any,
target: Target<Drawable>,
dataSource: com.bumptech.glide.load.DataSource,
isFirstResource: Boolean
): Boolean {
// 这里发送的Painter类型
trySendBlocking(
ImageLoadState.Success(
result = DrawablePainter(drawable),
source = dataSource.toDataSource(),
request = request
)
)
// Close the channel[Flow]
channel.close()
// Return true so that the target doesn't receive the drawable
// 这里返回true,Target就收不到结果了
return true
}
override fun onLoadFailed(
e: GlideException?,
model: Any,
target: Target<Drawable>,
isFirstResource: Boolean
): Boolean {
// Glide只为Listener派发错误的Exception,因此这里需要缓存一下
failException = e
// 返回false,允许Target被回调onLoadFailed
return false
}
}
// Start the image request into the target
requestManager.load(request)
.apply { requestBuilder?.invoke(this, size) }
.addListener(listener)
.into(target)
// Await the channel being closed and request finishing...
awaitClose {
// 这里没有调用Glide.clear(),因为clear之后Painter进行绘制的位图可能会被回收,这会报错
// See https://github.com/google/accompanist/issues/419
}
}
}
总体来说状态转换逻辑和以前类似,只不过使用callbackFlow生成数据流后,状态发送显得更加优雅了。
接下来关注rememberLoadPainter的具体实现:
/**
一个通用的 image loading painter,它为要实现的图像加载库提供Loader接口。应用程序通常不应该使用此功能,而更推荐使用在此基础上构建的扩展库,例如Coil和Glide库。
*/
@Composable
fun <R> rememberLoadPainter(
loader: Loader<R>,
request: R?,
shouldRefetchOnSizeChange: ShouldRefetchOnSizeChange,
fadeIn: Boolean = false,
fadeInDurationMs: Int = LoadPainterDefaults.FadeInTransitionDuration,
@DrawableRes previewPlaceholder: Int = 0,
): LoadPainter<R> {
val coroutineScope = rememberCoroutineScope()
// Our LoadPainter. This invokes the loader as appropriate to display the result.
val painter = remember(loader, coroutineScope) {
LoadPainter(loader, coroutineScope)
}
painter.request = request
painter.shouldRefetchOnSizeChange = shouldRefetchOnSizeChange
// 缓存父布局的大小,在计算图片请求的大小时会参考此值
painter.rootViewSize = LocalView.current.let { IntSize(it.width, it.height) }
// fadeIn动画的ColorFilter
// 实现原理和0.6.2版本类似,也是修改了ColorFliter的alpha(透明度),
// brightness(亮度),saturation(饱和度),不过这次的ColorFliter由LoadPainter直接进行处理
animateFadeInColorFilter(
painter = painter,
enabled = { result ->
// 从 disk/network 才去展示fadeIn动画
// 这使我们可以近似地只在“首次加载”时运行动画
fadeIn && result is ImageLoadState.Success && result.source != DataSource.MEMORY
},
durationMs = fadeInDurationMs,
)
// Our result painter, created from the ImageState with some composition lifecycle
// callbacks
// 我们的result painter,通过一些composition生命周期的回调从ImageState创建
updatePainter(painter, previewPlaceholder)
return painter
}
LoaderPainter的实现如下。这里要特别注意RememberObserver这个接口,RememberObserver是一个能够实现对remember行为的观察的接口,如果composition记住或者遗忘的是一个RememberObserver对象,RememberObserver能够收到这个事件,这些事件对LoaderPainter很有用。因为LoaderPainter毕竟并不是一个Compose组件,但是它必须了解它所在的父组件在什么时候离开了屏幕被销毁了(例如高速滑动列表时),这样它能够及时取消对状态流Flow<ImageLoadState>
的收集,这是避免发生图片闪烁、错位等问题的关键。
class LoadPainter<R> internal constructor(
private val loader: Loader<R>,
private val coroutineScope: CoroutineScope,
) : Painter(), RememberObserver {
private val paint by lazy(LazyThreadSafetyMode.NONE) { Paint() }
internal var painter by mutableStateOf<Painter>(EmptyPainter)
// 这个ColorFilter和渐入动画有关
internal var transitionColorFilter by mutableStateOf<ColorFilter?>(null)
// CoroutineScope for the current request
private var requestCoroutineScope: CoroutineScope? = null
/**
* The current request object.
*/
var request by mutableStateOf<R?>(null)
/**
* The root view size.
*/
internal var rootViewSize by mutableStateOf(IntSize(0, 0))
/**
* Lambda which will be invoked when the size changes, allowing
* optional re-fetching of the image.
*/
var shouldRefetchOnSizeChange by mutableStateOf(ShouldRefetchOnSizeChange { _, _ -> false })
/**
* The current [ImageLoadState].
* 被观察的ImageLoadState
*/
var loadState: ImageLoadState by mutableStateOf(ImageLoadState.Empty)
private set
private var alpha: Float by mutableStateOf(1f)
private var colorFilter: ColorFilter? by mutableStateOf(null)
/**
* 执行图像加载请求时要使用的大小
*/
private var requestSize by mutableStateOf<IntSize?>(null)
// Painter内的属性,指定边界大小
override val intrinsicSize: Size
get() = painter.intrinsicSize
override fun applyAlpha(alpha: Float): Boolean {
this.alpha = alpha
return true
}
override fun applyColorFilter(colorFilter: ColorFilter?): Boolean {
this.colorFilter = colorFilter
return true
}
override fun DrawScope.onDraw() {
// 根据Canvas的大小确定requestSize,是不是注意到requestSize的确定其实是存在延时的?
updateRequestSize(canvasSize = size)
// 下面是一些绘制逻辑
val transitionColorFilter = transitionColorFilter
if (colorFilter != null && transitionColorFilter != null) {
// If we have a transition color filter,
// and a specified color filter we need to
// draw the content in a layer for both to apply.
// See https://github.com/google/accompanist/issues/262
drawIntoCanvas { canvas ->
paint.colorFilter = transitionColorFilter
canvas.saveLayer(bounds = size.toRect(), paint = paint)
with(painter) {
draw(size, alpha, colorFilter)
}
canvas.restore()
} else {
// Otherwise we just draw the content directly, using the filter
with(painter) {
draw(size, alpha, colorFilter ?: transitionColorFilter)
}
}
}
// RememberObserver的方法
// remember运行了计算的lambda但是composition没记住这个对象时回调
override fun onAbandoned() {
// We've been abandoned from composition, so cancel our request scope
requestCoroutineScope?.cancel()
requestCoroutineScope = null
}
// RememberObserver的方法
// composition忘记了这个对象时回调
override fun onForgotten() {
// We've been forgotten from composition, so cancel our request scope
// onAbandoned和onForgotten时都会cancel运行中的协程
requestCoroutineScope?.cancel()
requestCoroutineScope = null
}
// RememberObserver的方法
// 当composition成功记住此对象时调用。
override fun onRemembered() {
// Cancel any on-going scope (this shouldn't really happen anyway)
// 先取消以前正running的协程
requestCoroutineScope?.cancel()
// 为当前请求创建新的scope,这允许我们取消作用域,而不影响父作用域的作业。
val scope = coroutineScope.coroutineContext.let { context ->
CoroutineScope(context + Job(context[Job]))
}.also { requestCoroutineScope = it }
// 我们已经被记住了,所以可以启动一个协程来观察当前的请求对象和请求大小。
// 每当这些值中的任何一个发生变化时,collectLatest块将运行并执行图像加载(任何正在进行的请求都将被取消)。
scope.launch {
// combine方法如其名,能把两个流合并成一个流
// 不过为什么这里要使用snapshotFlow把State转化成流呢?
// 因为使用流来监听State变化的最大好处就是collectLatest能够
// 取消掉上一次的execute调用并启动新一轮的加载
combine(
snapshotFlow { request },
snapshotFlow { requestSize },
transform = { request, size -> request to size }
).collectLatest { (request, size) ->
execute(request, size)
}
}
// 自动保险。如果没有从onDraw()获得合适的大小,
// 我们会将请求大小更新为-1,-1,这将加载原始大小的图像。
scope.launch {
if (requestSize == null) {
// 32ms should be enough time for measure/layout/draw to happen.
// 微妙的32毫秒
delay(32)
if (requestSize == null) {
// If we still don't have a request size, resolve the size without
// the canvas size
// 没获取到Canvas大小,使用原始尺寸
updateRequestSize(canvasSize = Size.Zero)
}
}
}
}
/**
* 执行图片加载请求并根据结果更新loadState的方法
下面描述的是一些状态转换逻辑,比如如果请求为null,状态就转变为Empty
*/
private suspend fun execute(request: R?, size: IntSize?) {
if (request == null || size == null) {
// If we don't have a request, set our state to Empty and return
loadState = ImageLoadState.Empty
return
}
// ...
loader.load(request, size)
.catch { throwable ->
when (throwable) {
is Error -> throw throwable
is IllegalStateException -> throw throwable
is IllegalArgumentException -> throw throwable
else -> {
emit(
ImageLoadState.Error(
result = null,
throwable = throwable,
request = request
)
)
}
}
}
.collect { loadState = it }
// 上面collect收集了加载的状态,注意,代表图片结果的Painter没被设置到LoadPainter的字段内
}
private fun updateRequestSize(canvasSize: Size) {
requestSize = IntSize(
width = when {
// If we have a canvas width, use it...
canvasSize.width >= 0.5f -> canvasSize.width.roundToInt()
// 还记得这个rootViewSize吗?它在rememberLoadPainter函数内被设置
rootViewSize.width > 0 -> rootViewSize.width
else -> -1
},
height = when {
// If we have a canvas height, use it...
canvasSize.height >= 0.5f -> canvasSize.height.roundToInt()
// Otherwise we fall-back to the root view size as an upper bound
rootViewSize.height > 0 -> rootViewSize.height
else -> -1
},
)
}
}
虽然说LoadPainter确实是实现了RememberObserver,但是,这个回调是怎么被注册的呢?答案藏在习以为常的remember函数中,传入remember的key,或者是calculation得出的值,它们如果是个RememberObserver,则会被插入到RememberManager的队列中,每当“记忆”和“遗忘”事件发生时都会得到通知。
@Composable
inline fun <T> remember(
key1: Any?,
calculation: @DisallowComposableCalls () -> T
): T {
return currentComposer.cache(currentComposer.changed(key1), calculation)
}
// 注意检查key是否有变化的changed函数
@ComposeCompilerApi
override fun changed(value: Any?): Boolean {
return if (nextSlot() != value) {
updateValue(value)
true
} else {
false
}
}
@PublishedApi
@OptIn(InternalComposeApi::class)
internal fun updateValue(value: Any?) {
// 两个if分支我们都可以看到 rememberManager.remembering()
// rememberManager.forgetting()这些调用
if (inserting) {
writer.update(value)
if (value is RememberObserver) {
// 注意,判断value是不是RememberObserver
record { _, _, rememberManager -> rememberManager.remembering(value) }
}
} else {
val groupSlotIndex = reader.groupSlotIndex - 1
recordSlotTableOperation(forParent = true) { _, slots, rememberManager ->
if (value is RememberObserver) {
abandonSet.add(value)
rememberManager.remembering(value)
}
when (val previous = slots.set(groupSlotIndex, value)) {
is RememberObserver ->
rememberManager.forgetting(previous)
is RecomposeScopeImpl -> {
val composition = previous.composition
if (composition != null) {
previous.composition = null
composition.pendingInvalidScopes = true
}
}
}
}
}
}
// RememberManager是个接口
internal interface RememberManager {
/**
* The [RememberObserver] is being remembered by a slot in the slot table.
*/
fun remembering(instance: RememberObserver)
/**
* The [RememberObserver] is being forgotten by a slot in the slot table.
*/
fun forgetting(instance: RememberObserver)
...
}
// RememberManager的实现类
private class RememberEventDispatcher(
private val abandoning: MutableSet<RememberObserver>
) : RememberManager {
private val remembering = mutableListOf<RememberObserver>()
private val forgetting = mutableListOf<RememberObserver>()
private val sideEffects = mutableListOf<() -> Unit>()
override fun remembering(instance: RememberObserver) {
forgetting.lastIndexOf(instance).let { index ->
if (index >= 0) {
forgetting.removeAt(index)
abandoning.remove(instance)
} else {
remembering.add(instance)
}
}
}
override fun forgetting(instance: RememberObserver) {
remembering.lastIndexOf(instance).let { index ->
if (index >= 0) {
remembering.removeAt(index)
abandoning.remove(instance)
} else {
forgetting.add(instance)
}
}
}
fun dispatchRememberObservers() {
// 派发forgetting和remembering事件的逻辑
if (forgetting.isNotEmpty()) {
for (i in forgetting.size - 1 downTo 0) {
val instance = forgetting[i]
if (instance !in abandoning) {
instance.onForgotten()
}
}
}
if (remembering.isNotEmpty()) {
remembering.fastForEach { instance ->
abandoning.remove(instance)
instance.onRemembered()
}
}
}
// ....
}
我们已经明白LoadPainter到底是怎么管理Loader返回的流结果了,最后一个需要注意的地方在函数updatePainter里,这个调用位于rememberLoadPainter最后,函数实现会根据图片加载State的变化来为LoadPainter设置Painter。不过这不是兜了个圈子吗?似乎也可以在collect更新State的同时把Painter更新一下?
/**
* 允许我们以状态观察当前结果。这个函数允许我们最小化重组范围,这样当loadState改变时,只有这个函数需要重新
* 启动。
*/
@Composable
private fun <R> updatePainter(
loadPainter: LoadPainter<R>,
@DrawableRes previewPlaceholder: Int = 0,
) {
loadPainter.painter = if (LocalInspectionMode.current && previewPlaceholder != 0) {
// 如果我们处于检查模式(预览),并且有一个预览占位符,只需使用图像绘制它并返回
// 还记得rememberGlidePainter的参数吗?这里就是传入的参数previewPlaceholder的用途
// 这个函数令LoadPainter完全忽略了State的变化,只展示静态图片
painterResource(previewPlaceholder)
} else {
// remember在这里看上去像是毫无必要的调用,
// 但这允许任何Painter实例接收记忆事件(如果它实现了RememberObserver)。不要移除。
remember(loadPainter.loadState) { loadPainter.loadState.painter } ?: EmptyPainter
}
}
现在来总结一下0.13.0版本的Glide远程图片扩展的实现思路:
图片加载:依然是用Target回调获取加载的结果。但是加载状态的返回现在使用流(Flow)来封装,不管是发起加载,异常处理,加载取消都更加优雅直观了。Loader是彻彻底底的生产者,LoadPainter则是消费者。
LoadPainter并不具有@Composable上下文,作为替代,它实现了RememberObserver来监听控件是否已经离屏销毁。
图片大小约束:依赖于LoadPainter获取的Canvas的大小。
渐入动画实现:跟0.6.2版本的思路相似,不过消费ColorFilter的类变成了LoadPainter。
loading占位图、error图等:这些功能直接依赖于具体的图片加载框架的实现,有则有,无则无。0.13.0版本稍微舍去了一些灵活性,不能够像PicassoImage一样直接传入error、loading的Compose内容(控件),不过仍然留有监听图片加载状态的方式,注意,LoadPainter的loadState
字段是公开的:
/**
* The current [ImageLoadState].
*/
var loadState: ImageLoadState by mutableStateOf(ImageLoadState.Empty)
private set
Accompanist内的Coil集成库最终集成到了Coil内部,成为其扩展,Glide的集成支持则在2021年8月的0.16.0版本被删除。
现在我们简要分析Coil的图片加载逻辑(版本2.0.0-alpha06)。Coil扩展库提供了两种方式来加载网络图片,两种方式正巧就是上面提到的在0.6.2版本与在0.13.0版本的两种实现形式:
// 实现形式1
@Composable
fun AsyncImage(
model: Any?,
contentDescription: String?,
imageLoader: ImageLoader,
modifier: Modifier = Modifier,
loading: @Composable (AsyncImageScope.(State.Loading) -> Unit)? = null,
success: @Composable (AsyncImageScope.(State.Success) -> Unit)? = null,
error: @Composable (AsyncImageScope.(State.Error) -> Unit)? = null,
alignment: Alignment = Alignment.Center,
contentScale: ContentScale = ContentScale.Fit,
alpha: Float = DefaultAlpha,
colorFilter: ColorFilter? = null,
filterQuality: FilterQuality = DefaultFilterQuality,
) {...}
// 实现形式2
@Composable
fun rememberAsyncImagePainter(
model: Any?,
imageLoader: ImageLoader,
filterQuality: FilterQuality = DefaultFilterQuality,
): AsyncImagePainter {...}
我们重点分析第二种形式,即rememberAsyncImagePainter函数,其实该函数的实现逻辑与Glide扩展库比较类似,只在某些细节有所区别:
// 这里不再详细分析源码,挑重要的讲
@Composable
fun rememberAsyncImagePainter(
model: Any?,
imageLoader: ImageLoader,
filterQuality: FilterQuality = DefaultFilterQuality,
): AsyncImagePainter {
val request = requestOf(model)
requireSupportedData(request.data)
// 注意这里,这里要求request的target为null
require(request.target == null) { "request.target must be null." }
// Dispatchers.Main.immediate是一个有趣的协程调度器,具体效果见类注释
val scope = rememberCoroutineScope { Dispatchers.Main.immediate }
// AsyncImagePainter
val painter = remember(scope) { AsyncImagePainter(scope, request, imageLoader) }
painter.request = request
painter.imageLoader = imageLoader
painter.filterQuality = filterQuality
// 是否处于预览模式
painter.isPreview = LocalInspectionMode.current
// 这里手动调用了一次onRemembered,onRemembered里有向ImageLoader提交request的逻辑
painter.onRemembered() // Invoke this manually so `painter.state` is up to date immediately.
// 这里的updatePainter更加复杂,里面有处理fadeIn动画的逻辑
updatePainter(painter, request, imageLoader)
return painter
}
Dispatchers.Main.immediate比单纯的Dispatchers.Main更加智能,它会减少不必要的调度,当它已经在正确的上下文中,它会立刻执行相应逻辑而无需额外的重新调度。效果类似于下面这样:
suspend fun updateUiElement(val text: String) {
/*
* 假设updateUiElement既会被Main线程调用也会被其他线程调用。
* 那么,当updateUiElement是在Main线程被调用的,更新uiElement.text 这段代码会直接运行,而换成Dispatchers.Main的话,它会再进行一次到Main的调度(明显这是赘余的调度)。
*/
withContext(Dispatchers.Main.immediate) {
uiElement.text = text
}
// Do context-independent logic such as logging
}
接下来我们关注AsyncImagePainter的具体实现:
/**
* 异步执行ImageRequest并呈现结果的Painter。
*/
class AsyncImagePainter internal constructor(
private val parentScope: CoroutineScope,
request: ImageRequest,
imageLoader: ImageLoader
) : Painter(), RememberObserver {
private var rememberScope: CoroutineScope? = null
// 图片请求的协程的Job
private var requestJob: Job? = null
private var drawSize = MutableStateFlow(Size.Zero)
private var alpha: Float by mutableStateOf(1f)
private var colorFilter: ColorFilter? by mutableStateOf(null)
internal var painter: Painter? by mutableStateOf(null)
internal var filterQuality = DefaultFilterQuality
internal var isPreview = false
/** The current [AsyncImagePainter.State]. */
var state: State by mutableStateOf(State.Empty)
private set
var request: ImageRequest by mutableStateOf(request)
internal set
var imageLoader: ImageLoader by mutableStateOf(imageLoader)
internal set
override val intrinsicSize: Size
get() = painter?.intrinsicSize ?: Size.Unspecified
override fun DrawScope.onDraw() {
// 绘制逻辑非常清爽
drawSize.value = size
// Draw the current painter.
painter?.apply { draw(size, alpha, colorFilter) }
}
...
override fun onRemembered() {
// 如果我们处于检查模式(预览),请跳过执行图像请求,并将状态设置为加载。
// 对于预览模式的支持
if (isPreview) {
val request = request.newBuilder().defaults(imageLoader.defaults).build()
state = State.Loading(request.placeholder?.toPainter())
return
}
// 与Glide扩展类似,创建了一个子作用域
if (rememberScope != null) return
val scope = parentScope + SupervisorJob(parentScope.coroutineContext.job)
rememberScope = scope
// 观察当前请求+请求大小,并根据需要启动新请求。
// Coil天然支持Kotlin协程,无需为生产者额外编写代码
scope.launch {
snapshotFlow { request }.collect { request ->
requestJob?.cancel()
requestJob = launch {
// execute是挂起函数,返回ImageResult
state = imageLoader.execute(updateRequest(request)).toState()
}
}
}
}
override fun onForgotten() {
rememberScope?.cancel()
rememberScope = null
requestJob?.cancel()
requestJob = null
}
override fun onAbandoned() = onForgotten()
/** Update the [request] to work with [AsyncImagePainter]. */
private fun updateRequest(request: ImageRequest): ImageRequest {
return request.newBuilder()
.target(
onStart = { placeholder ->
// 这里获取到placeholder的Painter并更新State为Loading
state = State.Loading(placeholder?.toPainter())
}
)
.apply {
if (request.defined.sizeResolver == null) {
// Coil内关于设置图片大小的代码
// size接受一个SizeResolver,一个含suspend函数的接口
// 获取尺寸的函数是挂起函数,非常合理,因为很多时候需要等待控件测量完毕才知道大小
size(DrawSizeResolver())
}
if (request.defined.precision != Precision.EXACT) {
precision(Precision.INEXACT)
}
}
.build()
}
private fun ImageResult.toState() = when (this) {....}
private fun Drawable.toPainter() = when (this) {...}
/** Suspends until the draw size for this [AsyncImagePainter] is unspecified or positive. */
private inner class DrawSizeResolver : SizeResolver {
override suspend fun size() = drawSize
.mapNotNull { size ->
when {
// mapNotNull会将drawSize转化为Flow,同时过滤null值,然后挂起函数first()
// 将会返回Flow中传送的第一个值
size.isUnspecified -> CoilSize.ORIGINAL
size.isPositive -> CoilSize(size.width.roundToInt(), size.height.roundToInt())
else -> null
}
}
.first()
}
/**
* The current state of the [AsyncImagePainter].
* 状态定义
*/
sealed class State {
abstract val painter: Painter?
object Empty : State() {
override val painter: Painter? get() = null
}
data class Loading(
override val painter: Painter?,
) : State()
data class Success(
override val painter: Painter,
val result: SuccessResult,
) : State()
data class Error(
override val painter: Painter?,
val result: ErrorResult,
) : State()
}
}
与Glide扩展库的思路类似,updatePainter函数会监听AsyncImagePainter的加载状态变化,同时更新AsyncImagePainter内的Painter字段。
@Composable
private fun updatePainter(
imagePainter: AsyncImagePainter,
request: ImageRequest,
imageLoader: ImageLoader
) {
// This may look like a useless remember, but this allows any painter instances
// to receive remember events (if it implements RememberObserver). Do not remove.
// 与Glide扩展库一样,允许结果Painter实例接收remember事件(如果它实现了RememberObserver)
val state = imagePainter.state
val painter = remember(state) { state.painter }
// 如果没有CrossfadeTransition(实现渐入变换)的话,直接设置imagePainter.painter并返回
val transition = request.defined.transitionFactory ?: imageLoader.defaults.transitionFactory
if (transition !is CrossfadeTransition.Factory) {
imagePainter.painter = painter
return
}
// ValueHolder是一个包含static field的数据类,目的是储存state.painter的值,
// 避免在state.painter值更新后函数rememberCrossfadePainter重组,
// 与rememberUpdatedState有异曲同工之妙,估计是因为rememberUpdatedState没有
// 传入key的API(这里要监听request变化),所以这里提供了简易的避免重组的实现
val loading = remember(request) { ValueHolder<Painter?>(null) }
if (state is State.Loading) loading.value = state.painter
// 必须位于Success状态且图片是从网络或磁盘加载的,才允许启动Crossfade,否则返回即可
if (state !is State.Success || state.result.dataSource == DataSource.MEMORY_CACHE) {
imagePainter.painter = painter
return
}
// Set the crossfade painter.
// 千呼万唤始出来的CrossfadePainter
imagePainter.painter = rememberCrossfadePainter(
key = state,
start = loading.value,
end = painter,
scale = request.scale,
durationMillis = transition.durationMillis,
fadeStart = !state.result.isPlaceholderCached,
preferExactIntrinsicSize = transition.preferExactIntrinsicSize
)
}
/** A simple mutable value holder that avoids recomposition. */
// 使用静态字段(static)避免重组
private class ValueHolder<T>(@JvmField var value: T)
CrossfadePainter的实现如下:
@Stable
private class CrossfadePainter(
private var start: Painter?,
private val end: Painter?,
private val scale: Scale,
private val durationMillis: Int,
private val fadeStart: Boolean,
private val preferExactIntrinsicSize: Boolean,
) : Painter() {
private var invalidateTick by mutableStateOf(0)
private var startTimeMillis = -1L
private var isDone = false
private var maxAlpha: Float by mutableStateOf(1f)
private var colorFilter: ColorFilter? by mutableStateOf(null)
override val intrinsicSize get() = computeIntrinsicSize()
override fun DrawScope.onDraw() {
// 如果Alpha变化完毕,直接使用end绘制
if (isDone) {
drawPainter(end, maxAlpha)
return
}
// Initialize startTimeMillis the first time we're drawn.
val uptimeMillis = SystemClock.uptimeMillis()
if (startTimeMillis == -1L) {
startTimeMillis = uptimeMillis
}
// Alpha的百分比 = (当前时间 - 开始时间) / 持续时间
val percent = (uptimeMillis - startTimeMillis) / durationMillis.toFloat()
val endAlpha = percent.coerceIn(0f, 1f) * maxAlpha
val startAlpha = if (fadeStart) maxAlpha - endAlpha else maxAlpha
isDone = percent >= 1.0
// Loading占位图渐出,Success图片结果渐入
drawPainter(start, startAlpha)
drawPainter(end, endAlpha)
if (isDone) {
start = null
} else {
// Increment this value to force the painter to be redrawn.
invalidateTick++
}
}
...
}
现在来总结一下Coil远程图片扩展的实现思路:
图片加载:Coil对协程提供直接的支持,size函数、execute加载函数本身就是挂起函数,因此无需额外的转换逻辑。而AsyncImagePainter则使用Job来控制图片加载协程。
AsyncImagePainter并不具有@Composable上下文,作为替代,它实现了RememberObserver来监听控件是否已经离屏销毁。
图片大小约束:依赖于DrawContext的Size。
渐入动画实现:依赖于DrawScope.onDraw()内的重绘行为,通过对透明度Alpha的百分比计算来实现,令Loading状态的占位图渐出,Success状态的最终结果渐入。
loading占位图、error图等:由Coil提供具体的实现。
根据上述分析我们可以发现,相比于Glide或是Picasso,基于Kotlin协程实现的图片加载库Coil,的确能够很轻松与Jetpack Compose配合工作。
至此对扩展库的分析已经完毕。横向对比来说,无论是对Picasso还是Glide进行扩展,我们都得额外做一些处理,才能够令本身不支持协程的它们在Compose下正常工作。要注意的是,单纯使用自定义的Target把结果返回到某个State,这种简单的做法在列表中可能会遇到严重的性能问题,因为Glide也好,Picasso也好,它们内部实现中取消图片加载以避免图片错位、闪烁的重要参照物就是ImageView,随着列表滑动不断创建的自定义的Target无法被它们识别并进行相应处理。相比之下基于协程的Coil的加载能够变得简单得多,我们只需要利用Job本身就可以控制加载的协程。
我和另外两位小伙伴最近合作构建了一款仿网易云的Android客户端,项目采用MVVM架构,部分界面使用Compose编写,除此之外,项目中还集成了多线程断点续传组件(by Giagor)与基于原生MediaPlayer进行再封装的音乐Service框架(by lanlin-code)
项目地址:https://github.com/giagor/PureJoy
如果项目对你有所帮助,欢迎点赞、Star、收藏~