为了方便评估,先将程序的输出位姿信息修改为tum格式,需要做如下改动
updatePath()函数中,下面一段修改为
if (SAVE_LOOP_PATH)
{
ofstream loop_path_file(VINS_RESULT_PATH, ios::app);
loop_path_file.setf(ios::fixed, ios::floatfield);
loop_path_file.precision(9);
loop_path_file << (*it)->time_stamp << " ";
loop_path_file.precision(5); //为进行评估,这里修改 x,y,z,w
loop_path_file << P.x() << " "
<< P.y() << " "
<< P.z() << " "
<< Q.x() << " "
<< Q.y() << " "
<< Q.z() << " "
<< Q.w() << endl;
loop_path_file.close();
}
addKeyFrame()函数中,下面一段修改为
if (SAVE_LOOP_PATH)
{
ofstream loop_path_file(VINS_RESULT_PATH, ios::app);
loop_path_file.setf(ios::fixed, ios::floatfield);
loop_path_file.precision(9);
loop_path_file << cur_kf->time_stamp << " ";
loop_path_file.precision(5); //为进行评估,这里修改 x,y,z,w
loop_path_file << P.x() << " "
<< P.y() << " "
<< P.z() << " "
<< Q.x() << " "
<< Q.y() << " "
<< Q.z() << " "
<< Q.w() << endl;
loop_path_file.close();
}
如果还要分析纯里程计的位姿信息,还需要修改visualization.cpp
中的pubOdometry()
函数,如下修改
// write result to file
// ofstream foutC(VINS_RESULT_PATH, ios::app);
// foutC.setf(ios::fixed, ios::floatfield);
// foutC.precision(0);
// foutC << header.stamp.toSec() * 1e9 << ",";
// foutC.precision(5);
// foutC << estimator.Ps[WINDOW_SIZE].x() << ","
// << estimator.Ps[WINDOW_SIZE].y() << ","
// << estimator.Ps[WINDOW_SIZE].z() << ","
// << tmp_Q.w() << ","
// << tmp_Q.x() << ","
// << tmp_Q.y() << ","
// << tmp_Q.z() << ","
// << estimator.Vs[WINDOW_SIZE].x() << ","
// << estimator.Vs[WINDOW_SIZE].y() << ","
// << estimator.Vs[WINDOW_SIZE].z() << "," << endl;
// foutC.close();
// write result to file 这里写入的是no_loop.csv
ofstream foutC(VINS_RESULT_PATH, ios::app);
foutC.setf(ios::fixed, ios::floatfield);
foutC.precision(5);
foutC << header.stamp.toSec() << " "<< estimator.Ps[WINDOW_SIZE].x() << " "
<< estimator.Ps[WINDOW_SIZE].y() << " "<< estimator.Ps[WINDOW_SIZE].z() << " "
<< tmp_Q.x() << " "<<tmp_Q.y() << " "<<tmp_Q.z() << " "<<tmp_Q.w()<<endl;
foutC.close();
修改每个数据集对应的yaml文件中的输出路径,这个看自己需求习惯
output_path: "~/catkin_ws_vinsFusion/src/VINS-Fusion/output/"
以上修改中一定要注意时间戳的精度,对很大影响evo评估的精度
安装
pip install evo --upgrade --no-binary evo
这样就可以使用相关命令
evo_traj tum myslam.txt -p
evo_ape tum data.txt vins_data.txt -va -p
--save_as_tum save trajectories in TUM format (as *.tum)
--save_as_kitti save poses in KITTI format (as *.kitti)
--save_as_bag save trajectories in ROS bag as <date>.bag
--save_plot “保存的路径”
详细使用可参考https://blog.csdn.net/CSDNhuaong/article/details/101909888
但是为了对数据集中的groundTruth进行处理,最好下载一下evo的源码,其中有些脚本需要使用
git地址https://github.com/MichaelGrupp/evo.git
首先把kitti的groundTruth文件转为TUM格式,在下载的evo源代码路径下,进入contrib文件夹,打开终端运行,注意修改为自己的路径
python kitti_poses_and_timestamps_to_trajectory.py kitti路径/data_odometry_gray/dataset/KITTIOdometry_data_odometry_poses/dataset/poses/05.txt kitti路径/data_odometry_gray/dataset/sequences/05/times.txt kitti_05_gt.txt
以上命令结合kitti的时间戳和位姿生成轨迹文件kitti_05_gt.txt
,这个文件接下来作为groundTruth与VinsFusion得到的轨迹进行评估。
一下三个命令在对应工作空间的三个终端启动,假设运行kitti05,注意修改为自己的路径
注意每次要source devel/setup.bash
roslaunch vins vins_rviz.launch
rosrun loop_fusion loop_fusion_node ~/catkin_ws_vinsFusion/src/VINS-Fusion/config/kitti_odom/kitti_config04-12.yaml
rosrun vins kitti_odom_test src/VINS-Fusion/config/kitti_odom/kitti_config04-12.yaml kitti路径/data_odometry_gray/dataset/sequences/05
运行结束即可在设定的路径下得到vio_loop.csv
根据上面得到的两个文件,计算轨迹误差
evo_ape tum vio_loop.csv ~/下载/evo/contrib/kitti_05_gt.txt -va --plot --plot_mode xyz
evo_rpe tum vio_loop.csv ~/下载/evo/contrib/kitti_05_gt.txt -r full -va --plot --plot_mode xyz
回环的groundTruth文件可以在https://github.com/ZhangXiwuu/KITTI_GroundTruth下载,不过这里用不到。
下载地址https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
将euroc数据集本身的groundTruth改为TUM格式,在数据集的groundTruth路径下,打开终端运行
evo_traj euroc data.csv --save_as_tum
即可得到data.tum文件,作为groundTruth
以MH_01为例子,注意修改路径以及 source devel/setup.bash
,在对应工作空间,每个命令使用一个终端运行
roslaunch vins vins_rviz.launch
rosrun vins vins_node ~/catkin_ws_Fine/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml
rosrun loop_fusion loop_fusion_node ~/catkin_ws_Fine/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml
rosbag play ~/euroc/MH_01_easy.bag
运行结束可以在指定的输出路径下得到vio_loop.csv
根据上面得到的两个文件,计算轨迹误差
evo_ape tum vio_loop.csv ~/euroc/MH_01_easy/mav0/state_groundtruth_estimate0/data.tum -va --plot --plot_mode xyz
evo_rpe tum vio_loop.csv ~/euroc/MH_01_easy/mav0/state_groundtruth_estimate0/data.tum -r full -va --plot --plot_mode xyz
下载地址:https://vision.in.tum.de/data/datasets/visual-inertial-dataset
TUM数据集的GroundTruth在对应的tar文件中 即~/TUM/dataset-room1_512_16/dso/gt_imu.csv
在这个路径下,打开终端执行
evo_traj euroc gt_imu.csv --save_as_tum
得到gt_imu.tum
,作为接下来评估的groundTruth
以room1为例,注意修改路径以及 source devel/setup.bash
,在对应工作空间,每个命令使用一个终端运行
roslaunch vins vins_rviz.launch
rosrun vins vins_node ~/catkin_ws_vinsFusion/src/VINS-Fusion/config/TUM/tum_mono_imu.yaml
rosrun loop_fusion loop_fusion_node ~/catkin_ws_vinsFusion/src/VINS-Fusion/config/TUM/tum_mono_imu.yaml
rosbag play ~/TUM/dataset-room1_512_16.bag
tum_mono_imu.yaml写法如下(可参考vinsmono的)
%YAML:1.0
imu: 1
num_of_cam: 1
#common parameters
imu_topic: "/imu0"
image0_topic: "/cam0/image_raw"
output_path: "/home/sch/catkin_ws_vinsFusion/src/VINS-Fusion/output/"
cam0_calib: "cam0.yaml"
image_width: 512
image_height: 512
# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 0 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.
# 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess.
# 2 Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning.
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
body_T_cam0: !!opencv-matrix
rows: 4
cols: 4
dt: d
data: [ -9.9951465899298464e-01, 7.5842033363785165e-03, -3.0214670573904204e-02, 4.4511917113940799e-02,
2.9940114644659861e-02, -3.4023430206013172e-02, -9.9897246995704592e-01, -7.3197096234105752e-02,
-8.6044170750674241e-03, -9.9939225835343004e-01, 3.3779845322755464e-02 ,-4.7972907300764499e-02,
0, 0, 0, 1]
#Multiple thread support
multiple_thread: 1
#feature traker paprameters
max_cnt: 150 # max feature number in feature tracking
min_dist: 15 # min distance between two features
freq: 10 # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image
F_threshold: 1.0 # ransac threshold (pixel)
show_track: 1 # publish tracking image as topic
equalize: 1 # if image is too dark or light, trun on equalize to find enough features
fisheye: 1 # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points
#optimization parameters
max_solver_time: 0.04 # max solver itration time (ms), to guarantee real time
max_num_iterations: 8 # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)
#imu parameters The more accurate parameters you provide, the better performance
acc_n: 0.04 # accelerometer measurement noise standard deviation. #0.2 0.04
gyr_n: 0.004 # gyroscope measurement noise standard deviation. #0.05 0.004
acc_w: 0.0004 # accelerometer bias random work noise standard deviation. #0.02
gyr_w: 2.0e-5 # gyroscope bias random work noise standard deviation. #4.0e-5
g_norm: 9.80766 # gravity magnitude
#unsynchronization parameters
estimate_td: 0 # online estimate time offset between camera and imu
td: 0.0 # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)
#rolling shutter parameters
rolling_shutter: 0 # 0: global shutter camera, 1: rolling shutter camera
rolling_shutter_tr: 0 # unit: s. rolling shutter read out time per frame (from data sheet).
#loop closure parameters
load_previous_pose_graph: 0 # load and reuse previous pose graph; load from 'pose_graph_save_path'
pose_graph_save_path: "/home/tony-ws1/output/pose_graph/" # save and load path
save_image: 1 # save image in pose graph for visualization prupose; you can close this function by setting 0
min_dist不能太大,否则会跑飞,这个参数控制的是提取角点进行光流追踪的密度,代表角点之间的最近距离,值越小表示提取角点数量越大。
cam0.yaml
写法如下
%YAML:1.0
---
model_type: KANNALA_BRANDT
camera_name: camera
image_width: 512
image_height: 512
mirror_parameters:
xi: 3.6313355285286337e+00
gamma1: 2.1387619122017772e+03
projection_parameters:
k2: 0.0034823894022493434
k3: 0.0007150348452162257
k4: -0.0020532361418706202
k5: 0.00020293673591811182
mu: 190.97847715128717
mv: 190.9733070521226
u0: 254.93170605935475
v0: 256.8974428996504
根据上面得到的两个文件,计算轨迹误差
evo_ape tum vio_loop.csv ~/TUM/dataset-room1_512_16/dso/gt_imu.tum -va --plot --plot_mode xyz
evo_rpe tum vio_loop.csv ~/TUM/dataset-room1_512_16/dso/gt_imu.tum -r full -va --plot --plot_mode xyz