当前位置: 首页 > 工具软件 > aws-toolbox > 使用案例 >

AWS 大数据和人工智能

嵇俊德
2023-12-01

长期保持更新,欢迎收藏关注

 

 

 

     

机器学习基础

https://amazonaws-china.com/cn/blogs/china/machine-learning-foundations/   

机器学习为数字化转型插上翅膀

https://amazonaws-china.com/cn/blogs/china/machine-learning-plugs-wings-for-digital-transformation/   

入门:Big Data on AWS 培训资源 | AWS 大数据博客

https://amazonaws-china.com/cn/blogs/china/getting-started-training-resources-for-big-data-on-aws/   

AWS 教您手把手玩转 Apache Superset 可视化 Amazon S3 里的数据

https://amazonaws-china.com/cn/blogs/china/aws-teaches-you-to-play-with-apache-superset-to-visualize-the-data-in-amazon-s3/   
     

通过 Rekognition 实现无服务器智能相册

https://amazonaws-china.com/cn/blogs/china/realizing-intelligent-album-without-server-by-rekognition/   

十分钟轻松使用 Scala 在 Apache Spark 部署深度学习模型

https://amazonaws-china.com/cn/blogs/china/deep-learning-with-spark-in-deep-java-library-in-10-minutes/   
     

基于 Amazon SageMaker 进行汽车型号的图像识别——一个基于深度学习迁移学习的端到端图像分类器

https://amazonaws-china.com/cn/blogs/china/image-recognition-of-car-models-based-on-amazon-sagemaker/   
     
     

在 Amazon SageMaker 中使用 XGBoost 来实现商业赋能

https://amazonaws-china.com/cn/blogs/china/use-xgboost-in-amazon-sagemaker-for-commercial-empowerment/   

在 SageMaker 临时实例上调度 Jupyter notebooks

https://amazonaws-china.com/cn/blogs/china/scheduling-jupyter-notebooks-on-sagemaker-ephemeral-instances/   

使用 Spring Boot 和 DJL(Deep Java Library) 轻松搭建企业级机器学习微服务

https://amazonaws-china.com/cn/blogs/china/use-spring-boot-and-djl-deep-java-library-to-easily-build-enterprise-level-machine-learning-microservices/   

为什么使用 Docker 容器进行机器学习开发

https://amazonaws-china.com/cn/blogs/china/why-use-docker-containers-for-machine-learning-development/   

使用 Amazon EC2 Spot 实例和 Amazon EMR 运行 Apache Spark 应用程序的最佳实践

https://amazonaws-china.com/cn/blogs/china/best-practices-for-running-apache-spark-applications-using-amazon-ec2-spot-instances-with-amazon-emr/   

AWS 如何将机器学习送到每位开发者和BI分析师手中

https://amazonaws-china.com/cn/blogs/china/how-aws-is-putting-machine-learning-in-the-hands-of-every-developer-and-bi-analyst/   
     

玩转GPU实例 – 我的Linux 工具箱

https://amazonaws-china.com/cn/blogs/china/play-with-gpu-instances-my-linux-toolbox/   

玩转GPU实例 – 我的Linux 工具箱之三 – 系统优化

https://amazonaws-china.com/cn/blogs/china/using-rekognition-realize-serverless-intelligent-album-playing-with-gpu-instance-iii-system-optimization/   

玩转 GPU 实例 – 我的 Linux 工具箱之二 – 基础设置

https://amazonaws-china.com/cn/blogs/china/play-with-gpu-instance-my-linux-toolboxii-basic-settings/   

玩转 GPU 实例之终结篇 – 深度学习的工具与框架

https://amazonaws-china.com/cn/blogs/china/play-the-end-of-gpu-instance-tools-and-framework-of-deep-learning/   

玩转GPU实例之系统工具 – NVIDIA 篇

https://amazonaws-china.com/cn/blogs/china/play-with-system-tools-of-gpu-instance-nvidia-chapter/   

使用 AWS Glue 和 Amazon S3 构建数据湖基础

https://amazonaws-china.com/cn/blogs/china/use-aws-glue-amazon-s3-build-datalake/   

使用 Amazon Transcribe 为视频增加中文字幕

https://amazonaws-china.com/cn/blogs/china/adding-chinese-subtitle-with-amazon-transcribe/   

使用 Amazon SageMaker 运行分布式 TensorFlow 训练

https://amazonaws-china.com/cn/blogs/china/running-distributed-tensorflow-training-with-amazon-sagemaker/   

使用 Amazon Athena 分析 S3 中的数据

https://amazonaws-china.com/cn/blogs/china/use-amazon-athena-analysis-s3-data/   

使用 Amazon Athena 从您的 SageMaker 笔记本运行 SQL 查询

https://amazonaws-china.com/cn/blogs/china/run-sql-queries-from-your-sagemaker-notebooks-using-amazon-athena/   

使用 AWS CDK 自动化部署自动生成 PDF 缩略图 Serverless 服务

https://amazonaws-china.com/cn/blogs/china/automatically-generate-pdf-thumbnail-serverless-service-using-aws-cdk-automated-deployment/   

通过 Amazon Athena 进行无服务器架构的大数据分析

https://amazonaws-china.com/cn/blogs/china/big-data-analysis-with-serverless-architecture-via-amazon-athena/   

AWS Lake Formation 入门

https://amazonaws-china.com/cn/blogs/china/getting-started-with-aws-lake-formation/   

Amazon Aurora 新功能 – 直接通过数据库使用机器学习

https://amazonaws-china.com/cn/blogs/china/new-for-amazon-aurora-use-machine-learning-directly-from-your-databases/   
     
     

 

 

 

 类似资料: