刚了解完go语言基础,打算做一个关于阅读go语言优秀的开源项目的专题来学习go语言.
项目地址:https://github.com/muesli/cache2go
cache2go是一个比较简单的go语言项目,其主要实现了一个具有心跳机制的缓存库,话不多说,我们直接看源码.
定义了一个缓存项的具体结构.
package cache2go
import (
"sync"
"time"
)
// CacheItem is an individual cache item
// Parameter data contains the user-set value in the cache.
type CacheItem struct {
sync.RWMutex
//读写锁,这种定义方法允许我们直接用(结构体变量名)来调用上锁和解锁操作.
// 索引
key interface{}
// 数据
data interface{}
// 缓存的生存周期,如果超过了这个时间还未被调用就会被删除.
lifeSpan time.Duration
// 创建时间
createdOn time.Time
// 最后一次使用时间
accessedOn time.Time
// 使用次数
accessCount int64
// 回调方法组,在删除前使用
aboutToExpire []func(key interface{})
}
//创建新CacheItem
func NewCacheItem(key interface{}, lifeSpan time.Duration, data interface{}) *CacheItem {
t := time.Now()
return &CacheItem{
key: key,
lifeSpan: lifeSpan,
createdOn: t,
accessedOn: t,
accessCount: 0,
aboutToExpire: nil,
data: data,
}
}
// 每次更新使用次数和最后一次使用时间.
func (item *CacheItem) KeepAlive() {
item.Lock()
defer item.Unlock()
item.accessedOn = time.Now()
item.accessCount++
}
// 返回生存周期
func (item *CacheItem) LifeSpan() time.Duration {
// immutable
return item.lifeSpan
}
// 返回最后使用时刻
func (item *CacheItem) AccessedOn() time.Time {
item.RLock()
defer item.RUnlock()
return item.accessedOn
}
// 返回创建时刻
func (item *CacheItem) CreatedOn() time.Time {
// immutable
return item.createdOn
}
// 返回使用次数
func (item *CacheItem) AccessCount() int64 {
item.RLock()
defer item.RUnlock()
return item.accessCount
}
// 返回索引
func (item *CacheItem) Key() interface{} {
// immutable
return item.key
}
// 返回数据
func (item *CacheItem) Data() interface{} {
// immutable
return item.data
}
// 设置回调函数
func (item *CacheItem) SetAboutToExpireCallback(f func(interface{})) {
if len(item.aboutToExpire) > 0 {
item.RemoveAboutToExpireCallback()
}
item.Lock()
defer item.Unlock()
item.aboutToExpire = append(item.aboutToExpire, f)
}
// 增加回调函数
func (item *CacheItem) AddAboutToExpireCallback(f func(interface{})) {
item.Lock()
defer item.Unlock()
item.aboutToExpire = append(item.aboutToExpire, f)
}
// 清空回调函数
func (item *CacheItem) RemoveAboutToExpireCallback() {
item.Lock()
defer item.Unlock()
item.aboutToExpire = nil
}
可以看到方法对于存在修改的变量进行读写操作时会进行上锁操作,学过操作系统的都知道这是防止并发操作产生问题,而对于不会修改的变量没有上锁.
定义了一个可以存储CacheItem的表,使用map进行实现
/*
* Simple caching library with expiration capabilities
* Copyright (c) 2013-2017, Christian Muehlhaeuser <muesli@gmail.com>
*
* For license see LICENSE.txt
*/
package cache2go
import (
"log"
"sort"
"sync"
"time"
)
// CacheTable is a table within the cache
type CacheTable struct {
sync.RWMutex //读写锁
// table的名字
name string
// 用来存储CacheItem
items map[interface{}]*CacheItem
// 用来定时清理缓存的定时器
cleanupTimer *time.Timer
// 用来记录下次清理缓存的时间
cleanupInterval time.Duration
// 该表的日志.
logger *log.Logger
// 用来创建新CacheItem的回调函数,用户可以自定义
loadData func(key interface{}, args ...interface{}) *CacheItem
// 加入新CacheItem的回调函数
addedItem []func(item *CacheItem)
// 用户删除CacheItem的回调函数
aboutToDeleteItem []func(item *CacheItem)
}
// 计算当前表中存在多少缓存项
func (table *CacheTable) Count() int {
table.RLock()
defer table.RUnlock()
return len(table.items)
}
// 遍历所有缓存项,这里用户可以自定义如何遍历.
func (table *CacheTable) Foreach(trans func(interface{}, *CacheItem)) {
table.RLock()
defer table.RUnlock()
for k, v := range table.items {
trans(k, v)
}
}
//设置创建新cacheitem的回调函数.
func (table *CacheTable) SetDataLoader(f func(interface{}, ...interface{}) *CacheItem) {
table.Lock()
defer table.Unlock()
table.loadData = f
}
// 设置加入新缓存的回调函数
func (table *CacheTable) SetAddedItemCallback(f func(*CacheItem)) {
if len(table.addedItem) > 0 {
table.RemoveAddedItemCallbacks()
}
table.Lock()
defer table.Unlock()
table.addedItem = append(table.addedItem, f)
}
//增加加入新缓存的回调函数
func (table *CacheTable) AddAddedItemCallback(f func(*CacheItem)) {
table.Lock()
defer table.Unlock()
table.addedItem = append(table.addedItem, f)
}
// 删除加入新缓存的回调函数
func (table *CacheTable) RemoveAddedItemCallbacks() {
table.Lock()
defer table.Unlock()
table.addedItem = nil
}
// 设置删除缓存的回调函数
func (table *CacheTable) SetAboutToDeleteItemCallback(f func(*CacheItem)) {
if len(table.aboutToDeleteItem) > 0 {
table.RemoveAboutToDeleteItemCallback()
}
table.Lock()
defer table.Unlock()
table.aboutToDeleteItem = append(table.aboutToDeleteItem, f)
}
// 增加删除缓存的回调函数
func (table *CacheTable) AddAboutToDeleteItemCallback(f func(*CacheItem)) {
table.Lock()
defer table.Unlock()
table.aboutToDeleteItem = append(table.aboutToDeleteItem, f)
}
// 删除删除缓存的回调函数
func (table *CacheTable) RemoveAboutToDeleteItemCallback() {
table.Lock()
defer table.Unlock()
table.aboutToDeleteItem = nil
}
// 设置日志
func (table *CacheTable) SetLogger(logger *log.Logger) {
table.Lock()
defer table.Unlock()
table.logger = logger
}
// 定时清空缓存
func (table *CacheTable) expirationCheck() {
table.Lock()
if table.cleanupTimer != nil {
table.cleanupTimer.Stop()
}
if table.cleanupInterval > 0 {
table.log("Expiration check triggered after", table.cleanupInterval, "for table", table.name)
} else {
table.log("Expiration check installed for table", table.name)
}
// To be more accurate with timers, we would need to update 'now' on every
// loop iteration. Not sure it's really efficient though.
now := time.Now()
smallestDuration := 0 * time.Second
for key, item := range table.items {
// Cache values so we don't keep blocking the mutex.
item.RLock()
lifeSpan := item.lifeSpan
accessedOn := item.accessedOn
item.RUnlock()
if lifeSpan == 0 {
continue
}
if now.Sub(accessedOn) >= lifeSpan {
// Item has excessed its lifespan.
table.deleteInternal(key)
} else {
// Find the item chronologically closest to its end-of-lifespan.
if smallestDuration == 0 || lifeSpan-now.Sub(accessedOn) < smallestDuration {
smallestDuration = lifeSpan - now.Sub(accessedOn)
}
}
}
// Setup the interval for the next cleanup run.
table.cleanupInterval = smallestDuration
if smallestDuration > 0 {
table.cleanupTimer = time.AfterFunc(smallestDuration, func() {
go table.expirationCheck()
})
}
table.Unlock()
}
func (table *CacheTable) addInternal(item *CacheItem) {
// Careful: do not run this method unless the table-mutex is locked!
// It will unlock it for the caller before running the callbacks and checks
table.log("Adding item with key", item.key, "and lifespan of", item.lifeSpan, "to table", table.name)
table.items[item.key] = item
// Cache values so we don't keep blocking the mutex.
expDur := table.cleanupInterval
addedItem := table.addedItem
table.Unlock()
// Trigger callback after adding an item to cache.
if addedItem != nil {
for _, callback := range addedItem {
callback(item)
}
}
// If we haven't set up any expiration check timer or found a more imminent item.
if item.lifeSpan > 0 && (expDur == 0 || item.lifeSpan < expDur) {
table.expirationCheck()
}
}
// 直接增加一个新缓存.
func (table *CacheTable) Add(key interface{}, lifeSpan time.Duration, data interface{}) *CacheItem {
item := NewCacheItem(key, lifeSpan, data)
// Add item to cache.
table.Lock()
table.addInternal(item)
return item
}
//删除一个缓存,并实行所有回调函数
func (table *CacheTable) deleteInternal(key interface{}) (*CacheItem, error) {
r, ok := table.items[key]
if !ok {
return nil, ErrKeyNotFound
}
// Cache value so we don't keep blocking the mutex.
aboutToDeleteItem := table.aboutToDeleteItem
table.Unlock()
// Trigger callbacks before deleting an item from cache.
if aboutToDeleteItem != nil {
for _, callback := range aboutToDeleteItem {
callback(r)
}
}
r.RLock()
defer r.RUnlock()
if r.aboutToExpire != nil {
for _, callback := range r.aboutToExpire {
callback(key)
}
}
table.Lock()
table.log("Deleting item with key", key, "created on", r.createdOn, "and hit", r.accessCount, "times from table", table.name)
delete(table.items, key)
return r, nil
}
// 删除一个缓存
func (table *CacheTable) Delete(key interface{}) (*CacheItem, error) {
table.Lock()
defer table.Unlock()
return table.deleteInternal(key)
}
// 判断通过索引判断缓存是否存在
func (table *CacheTable) Exists(key interface{}) bool {
table.RLock()
defer table.RUnlock()
_, ok := table.items[key]
return ok
}
// 如果找不到某个索引便增加
func (table *CacheTable) NotFoundAdd(key interface{}, lifeSpan time.Duration, data interface{}) bool {
table.Lock()
if _, ok := table.items[key]; ok {
table.Unlock()
return false
}
item := NewCacheItem(key, lifeSpan, data)
table.addInternal(item)
return true
}
// 查找某个索引的Data,如果不在缓存中,尝试用创建方法加入.
func (table *CacheTable) Value(key interface{}, args ...interface{}) (*CacheItem, error) {
table.RLock()
r, ok := table.items[key]
loadData := table.loadData
table.RUnlock()
if ok {
// Update access counter and timestamp.
r.KeepAlive()
return r, nil
}
// Item doesn't exist in cache. Try and fetch it with a data-loader.
if loadData != nil {
item := loadData(key, args...)
if item != nil {
table.Add(key, item.lifeSpan, item.data)
return item, nil
}
return nil, ErrKeyNotFoundOrLoadable
}
return nil, ErrKeyNotFound
}
// 清空表中所有的缓存
func (table *CacheTable) Flush() {
table.Lock()
defer table.Unlock()
table.log("Flushing table", table.name)
table.items = make(map[interface{}]*CacheItem)
table.cleanupInterval = 0
if table.cleanupTimer != nil {
table.cleanupTimer.Stop()
}
}
// CacheItemPair maps key to access counter
// 这里是为了返回表中使用次数最多的cacheitem定义了一个新的结构
type CacheItemPair struct {
Key interface{}
AccessCount int64
}
// CacheItemPairList is a slice of CacheIemPairs that implements sort.
// Interface to sort by AccessCount.
type CacheItemPairList []CacheItemPair
func (p CacheItemPairList) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p CacheItemPairList) Len() int { return len(p) }
func (p CacheItemPairList) Less(i, j int) bool { return p[i].AccessCount > p[j].AccessCount }
// 返回表中出现次数最多的cacheitem
func (table *CacheTable) MostAccessed(count int64) []*CacheItem {
table.RLock()
defer table.RUnlock()
p := make(CacheItemPairList, len(table.items))
i := 0
for k, v := range table.items {
p[i] = CacheItemPair{k, v.accessCount}
i++
}
sort.Sort(p)
var r []*CacheItem
c := int64(0)
for _, v := range p {
if c >= count {
break
}
item, ok := table.items[v.Key]
if ok {
r = append(r, item)
}
c++
}
return r
}
// 写日志的封装
func (table *CacheTable) log(v ...interface{}) {
if table.logger == nil {
return
}
table.logger.Println(v...)
}
定义了一个最顶层的结构体,用来维护多表.
/*
* Simple caching library with expiration capabilities
* Copyright (c) 2012, Radu Ioan Fericean
* 2013-2017, Christian Muehlhaeuser <muesli@gmail.com>
*
* For license see LICENSE.txt
*/
package cache2go
import (
"sync"
)
var (
cache = make(map[string]*CacheTable) // 直接创建一个string - CacheTable 的映射,方便进行多表Cache的维护.
mutex sync.RWMutex //不同与cache.go 和 cachetable.go 里面创建互斥锁的方式,读者可以自行搜索体会.
)
// 返回一个CacheTable
func Cache(table string) *CacheTable {
mutex.RLock()
t, ok := cache[table]
mutex.RUnlock()
if !ok {
mutex.Lock()
t, ok = cache[table]
// Double check whether the table exists or not.
if !ok {
t = &CacheTable{
name: table,
items: make(map[interface{}]*CacheItem),
}
cache[table] = t
}
mutex.Unlock()
}
return t
}
其他的代码就做一个简单的介绍吧.
可以发现这个缓存库有三层结构: Cache -> CacheTable -> CacheItem.
对于回调函数,大多数的作用是给用户留一些自定义的空间,比如examples里面的例子大多都会讲内容打印到控制台之类.
CacheTable.expirationCheck()中有一个 并发操作:time.AfterFunc(),这里刚开始的时候查阅资料的时候网上的例子过于简单,导致我一度以为只要父线程终止了,这个子进程也会终止,其实不然,只要main函数为终止,子线程就一定会执行.
对于可修改的数据,需要记得上锁再操作.
还有新学到的一点就是,每个文件中以小写字母开头的方法,变量…都不能被外部文件调用,所以不用担心有些函数被用户不小心调用而引发危险.