设备驱动模型中的bus、device、driver,这三种都是有迹可循的。其中bus代表实际的总线,device代表实际的设备和接口,而driver则对应存在的驱动。但本节要介绍的class,是设备类,完全是抽象出来的概念,没有对应的实体。所谓设备类,是指提供的用户接口相似的一类设备的集合,常见的设备类的有block、tty、input、usb等等。
class对应的代码在drivers/base/class.c中,对应的头文件在include/linux/device.h和drivers/base/base.h中。
struct class {
const char *name;
struct module *owner;
struct class_attribute *class_attrs;
struct device_attribute *dev_attrs;
struct kobject *dev_kobj;
int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env);
char *(*devnode)(struct device *dev, mode_t *mode);
void (*class_release)(struct class *class);
void (*dev_release)(struct device *dev);
int (*suspend)(struct device *dev, pm_message_t state);
int (*resume)(struct device *dev);
const struct dev_pm_ops *pm;
struct class_private *p;
};
struct class就是设备驱动模型中通用的设备类结构。
/sys/dev
下创建名为自己设备号的软链接。但设备不知道自己属于块设备还是字符设备,所以会请示自己所属的class,class就是用dev_kobj记录本类设备应属于的哪种设备。 /**
* struct class_private - structure to hold the private to the driver core portions of the class structure.
*
* @class_subsys - the struct kset that defines this class. This is the main kobject
* @class_devices - list of devices associated with this class
* @class_interfaces - list of class_interfaces associated with this class
* @class_dirs - "glue" directory for virtual devices associated with this class
* @class_mutex - mutex to protect the children, devices, and interfaces lists.
* @class - pointer back to the struct class that this structure is associated
* with.
*
* This structure is the one that is the actual kobject allowing struct
* class to be statically allocated safely. Nothing outside of the driver
* core should ever touch these fields.
*/
struct class_private {
struct kset class_subsys;
struct klist class_devices;
struct list_head class_interfaces;
struct kset class_dirs;
struct mutex class_mutex;
struct class *class;
};
#define to_class(obj) \
container_of(obj, struct class_private, class_subsys.kobj)
dev->class
存在,而dev->parent->class
不存在,就要建立一个胶水目录,在sysfs中隔离这两个实际上有父子关系的设备。linux这么做也是为了在sysfs显示时更清晰一些。但如果父设备下有多个属于同一类的设备,它们需要放在同一胶水目录下。怎么寻找这个胶水目录有没有建立过,就要从这里的class_dirs下的kobject中找了。class是指回struct class的指针。
struct class_interface {
struct list_head node;
struct class *class;
int (*add_dev) (struct device *, struct class_interface *);
void (*remove_dev) (struct device *, struct class_interface *);
};
class->p->class_interface
上的类接口的结构。用于描述设备类对外的一种接口。class->p->class_interface
链表上的节点。从结构来看class_interface真是太简单了。我们都怀疑其到底有没有用。但往往看起来简单的内容实际可能更复杂,比如driver,还有这里的
class_interface。
struct class_attribute {
struct attribute attr;
ssize_t (*show)(struct class *class, char *buf);
ssize_t (*store)(struct class *class, const char *buf, size_t count);
};
#define CLASS_ATTR(_name, _mode, _show, _store) \
struct class_attribute class_attr_##_name = __ATTR(_name, _mode, _show, _store)
从bus_attribute,到driver_attribute,到device_attribute,当然也少不了这里的class_attribute。struct attribute封装这种东西,既简单又耐用,何乐而不为?
#define to_class_attr(_attr) container_of(_attr, struct class_attribute, attr)
static ssize_t class_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
{
struct class_attribute *class_attr = to_class_attr(attr);
struct class_private *cp = to_class(kobj);
ssize_t ret = -EIO;
if (class_attr->show)
ret = class_attr->show(cp->class, buf);
return ret;
}
static ssize_t class_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct class_attribute *class_attr = to_class_attr(attr);
struct class_private *cp = to_class(kobj);
ssize_t ret = -EIO;
if (class_attr->store)
ret = class_attr->store(cp->class, buf, count);
return ret;
}
static struct sysfs_ops class_sysfs_ops = {
.show = class_attr_show,
.store = class_attr_store,
};
class_sysfs_ops就是class定义的sysfs读写函数集合。
static void class_release(struct kobject *kobj)
{
struct class_private *cp = to_class(kobj);
struct class *class = cp->class;
pr_debug("class '%s': release.\n", class->name);
if (class->class_release)
class->class_release(class);
else
pr_debug("class '%s' does not have a release() function, "
"be careful\n", class->name);
}
static struct kobj_type class_ktype = {
.sysfs_ops = &class_sysfs_ops,
.release = class_release,
};
class_release()是在class引用计数降为零时调用的释放函数。因为class在结构中提供了class_release的函数指针,所以可以由具体的class调用相应的处理方法。
class_ktype是为class对应的kobject(也可以说kset)定义的kobj_type。
/* Hotplug events for classes go to the class class_subsys */
static struct kset *class_kset;
int __init classes_init(void)
{
class_kset = kset_create_and_add("class", NULL, NULL);
if (!class_kset)
return -ENOMEM;
return 0;
}
class_kset代表了/sys/class
对应的kset,在classes_init()中创建。
classes_init()的作用,和之前见到的buses_init()、devices_init()作用相似,都是构建/sys下的主要目录结构。
int class_create_file(struct class *cls, const struct class_attribute *attr)
{
int error;
if (cls)
error = sysfs_create_file(&cls->p->class_subsys.kobj,
&attr->attr);
else
error = -EINVAL;
return error;
}
void class_remove_file(struct class *cls, const struct class_attribute *attr)
{
if (cls)
sysfs_remove_file(&cls->p->class_subsys.kobj, &attr->attr);
}
class_create_file()创建class的属性文件。
class_remove_files()删除class的属性文件。这两个都是对外提供的API。
static struct class *class_get(struct class *cls)
{
if (cls)
kset_get(&cls->p->class_subsys);
return cls;
}
static void class_put(struct class *cls)
{
if (cls)
kset_put(&cls->p->class_subsys);
}
class_get()增加对cls的引用计数,class_put()减少对cls的引用计数,并在计数降为零时调用相应的释放函数,也就是之前见过的class_release函数。
class的引用计数是由class_private结构中的kset来管的,kset又是由其内部kobject来管的,kobject又是调用其结构中的kref来管的。这是一种嵌套的封装技术。
static int add_class_attrs(struct class *cls)
{
int i;
int error = 0;
if (cls->class_attrs) {
for (i = 0; attr_name(cls->class_attrs[i]); i++) {
error = class_create_file(cls, &cls->class_attrs[i]);
if (error)
goto error;
}
}
done:
return error;
error:
while (--i >= 0)
class_remove_file(cls, &cls->class_attrs[i]);
goto done;
}
static void remove_class_attrs(struct class *cls)
{
int i;
if (cls->class_attrs) {
for (i = 0; attr_name(cls->class_attrs[i]); i++)
class_remove_file(cls, &cls->class_attrs[i]);
}
}
add_class_attrs()把cls->class_attrs
中的属性加入sysfs。
remove_class_attrs()把cls->class_attrs
中的属性删除。
到了class这个级别,就和bus一样,除了自己,没有其它结构能为自己添加属性。
static void klist_class_dev_get(struct klist_node *n)
{
struct device *dev = container_of(n, struct device, knode_class);
get_device(dev);
}
static void klist_class_dev_put(struct klist_node *n)
{
struct device *dev = container_of(n, struct device, knode_class);
put_device(dev);
}
klist_class_dev_get()增加节点对应设备的引用计数,klist_class_dev_put()减少节点对应设备的引用计数。
这是class的设备链表,在节点添加和删除时调用的。相似的klist链表,还有驱动的设备链表,不过由于linux对驱动不太信任,所以没有让驱动占用设备的引用计数。还有总线的设备链表,在添加释放节点时分别调用klist_devices_get()和list_devices_put(),是在bus.c中定义的。还有设备的子设备链表,在添加释放节点时分别调用klist_children_get()和klist_children_put(),是在device.c中定义的。看来klist中的get()/put()函数,是在初始化klist时设定的,也由创建方负责实现。
/* This is a #define to keep the compiler from merging different
* instances of the __key variable */
#define class_register(class) \
({ \
static struct lock_class_key __key; \
__class_register(class, &__key); \
})
int __class_register(struct class *cls, struct lock_class_key *key)
{
struct class_private *cp;
int error;
pr_debug("device class '%s': registering\n", cls->name);
cp = kzalloc(sizeof(*cp), GFP_KERNEL);
if (!cp)
return -ENOMEM;
klist_init(&cp->class_devices, klist_class_dev_get, klist_class_dev_put);
INIT_LIST_HEAD(&cp->class_interfaces);
kset_init(&cp->class_dirs);
__mutex_init(&cp->class_mutex, "struct class mutex", key);
error = kobject_set_name(&cp->class_subsys.kobj, "%s", cls->name);
if (error) {
kfree(cp);
return error;
}
/* set the default /sys/dev directory for devices of this class */
if (!cls->dev_kobj)
cls->dev_kobj = sysfs_dev_char_kobj;
#if defined(CONFIG_SYSFS_DEPRECATED) && defined(CONFIG_BLOCK)
/* let the block class directory show up in the root of sysfs */
if (cls != &block_class)
cp->class_subsys.kobj.kset = class_kset;
#else
cp->class_subsys.kobj.kset = class_kset;
#endif
cp->class_subsys.kobj.ktype = &class_ktype;
cp->class = cls;
cls->p = cp;
error = kset_register(&cp->class_subsys);
if (error) {
kfree(cp);
return error;
}
error = add_class_attrs(class_get(cls));
class_put(cls);
return error;
}
class_register()将class注册到系统中。之所以把class_register()写成宏定义的形式,似乎是为了__key的不同实例合并,在__class_register()中确实使用了__key,但是是为了调试class中使用的mutex用的。__key的类型lock_class_key是只有使用LOCKDEP定义时才会有内容,写成这样也许是为了在lock_class_key定义为空时减少一些不必要的空间消耗。总之这类trick的做法,是不会影响我们理解代码逻辑的。
__class_register()中进行实际的class注册工作:
先是分配和初始化class_private结构。
可以看到对cp->class_dirs,只是调用kset_init()定义,并未实际注册到sysfs中。
调用kobject_set_name()创建kobj中实际的类名。
cls->dev_kobj如果未设置,这里会被设为sysfs_dev_char_kobj。
调用kset_register()将class注册到sysfs中,所属kset为class_kset,使用类型为class_ktype。因为没有设置parent,会以/sys/class为父目录。
最后调用add_class_attrs()添加相关的属性文件。
在bus、device、driver、class中,最简单的注册过程就是class的注册,因为它不仅和bus一样属于一种顶层结构,而且连通用的属性文件都不需要,所有的操作就围绕在class_private的创建初始化与添加到sysfs上面。
void class_unregister(struct class *cls)
{
pr_debug("device class '%s': unregistering\n", cls->name);
remove_class_attrs(cls);
kset_unregister(&cls->p->class_subsys);
}
class_unregister()取消class的注册。它的操作也简单到了极点。
只是这里的class注销也太懒了些。无论是class_unregister(),还是在计数完全释放时调用的class_release(),都找不到释放class_private结构的地方。这是bug吗?
我怀着敬畏的心情,查看了linux-3.0.4中的drivers/base/class.c,发现其中的class_release()函数最后添加了释放class_private结构的代码。看来linux-2.6.32还是有较为明显的缺陷。奈何木已成舟,只能先把这个bug在现有代码里改正,至少以后自己编译内核时不会再这个问题上出错。
不过说起来,像bus_unregister()、class_unregister()这种函数,估计只有在关机时才可能调用得到,实在是无关紧要。
/* This is a #define to keep the compiler from merging different
* instances of the __key variable */
#define class_create(owner, name) \
({ \
static struct lock_class_key __key; \
__class_create(owner, name, &__key); \
})
/**
* class_create - create a struct class structure
* @owner: pointer to the module that is to "own" this struct class
* @name: pointer to a string for the name of this class.
* @key: the lock_class_key for this class; used by mutex lock debugging
*
* This is used to create a struct class pointer that can then be used
* in calls to device_create().
*
* Note, the pointer created here is to be destroyed when finished by
* making a call to class_destroy().
*/
struct class *__class_create(struct module *owner, const char *name,
struct lock_class_key *key)
{
struct class *cls;
int retval;
cls = kzalloc(sizeof(*cls), GFP_KERNEL);
if (!cls) {
retval = -ENOMEM;
goto error;
}
cls->name = name;
cls->owner = owner;
cls->class_release = class_create_release;
retval = __class_register(cls, key);
if (retval)
goto error;
return cls;
error:
kfree(cls);
return ERR_PTR(retval);
}
class_create()是提供给外界快速创建class的API。应该说,class中可以提供的一系列函数,这里都没有提供,或许可以在创建后再加上。
相似的函数是在core.c中的device_create(),那是提供一种快速创建device的API。
static void class_create_release(struct class *cls)
{
pr_debug("%s called for %s\n", __func__, cls->name);
kfree(cls);
}
/**
* class_destroy - destroys a struct class structure
* @cls: pointer to the struct class that is to be destroyed
*
* Note, the pointer to be destroyed must have been created with a call
* to class_create().
*/
void class_destroy(struct class *cls)
{
if ((cls == NULL) || (IS_ERR(cls)))
return;
class_unregister(cls);
}
class_destroy()是与class_create()相对的删除class的函数。
虽然在class_destroy()中没有看到释放class内存的代码,但这是在class_create_release()中做的。class_create_release()之前已经在class_create()中被作为class结构中定义的class_release()函数,会在class引用计数降为零时被调用。
在class中,class结构和class_private结构都是在class引用计数降为零时才释放的。这保证了即使class已经被注销,仍然不会影响其下设备的正常使用。但在bus中,bus_private结构是在bus_unregister()中就被释放的。没有了bus_private,bus下面的device和driver想必都无法正常工作了吧。这或许和bus对应与实际总线有关。总线都没了,下面的设备自然没人用了。
class为了遍历设备链表,特意定义了专门的结构和遍历函数,实现如下。
struct class_dev_iter {
struct klist_iter ki;
const struct device_type *type;
};
/**
* class_dev_iter_init - initialize class device iterator
* @iter: class iterator to initialize
* @class: the class we wanna iterate over
* @start: the device to start iterating from, if any
* @type: device_type of the devices to iterate over, NULL for all
*
* Initialize class iterator @iter such that it iterates over devices
* of @class. If @start is set, the list iteration will start there,
* otherwise if it is NULL, the iteration starts at the beginning of
* the list.
*/
void class_dev_iter_init(struct class_dev_iter *iter, struct class *class,
struct device *start, const struct device_type *type)
{
struct klist_node *start_knode = NULL;
if (start)
start_knode = &start->knode_class;
klist_iter_init_node(&class->p->class_devices, &iter->ki, start_knode);
iter->type = type;
}
struct device *class_dev_iter_next(struct class_dev_iter *iter)
{
struct klist_node *knode;
struct device *dev;
while (1) {
knode = klist_next(&iter->ki);
if (!knode)
return NULL;
dev = container_of(knode, struct device, knode_class);
if (!iter->type || iter->type == dev->type)
return dev;
}
}
void class_dev_iter_exit(struct class_dev_iter *iter)
{
klist_iter_exit(&iter->ki);
}
之所以要如此费一番周折,在klist_iter外面加上这一层封装,完全是为了对链表进行选择性遍历。选择的条件就是device_type。device_type是在device结构中使用的类型,其中定义了相似设备使用的一些处理操作,可以说比class的划分还要小一层。class对设备链表如此遍历,也是用心良苦啊。
int class_for_each_device(struct class *class, struct device *start,
void *data, int (*fn)(struct device *, void *))
{
struct class_dev_iter iter;
struct device *dev;
int error = 0;
if (!class)
return -EINVAL;
if (!class->p) {
WARN(1, "%s called for class '%s' before it was initialized",
__func__, class->name);
return -EINVAL;
}
class_dev_iter_init(&iter, class, start, NULL);
while ((dev = class_dev_iter_next(&iter))) {
error = fn(dev, data);
if (error)
break;
}
class_dev_iter_exit(&iter);
return error;
}<pre class="cpp" name="code">struct device *class_find_device(struct class *class, struct device *start,
void *data,
int (*match)(struct device *, void *))
{
struct class_dev_iter iter;
struct device *dev;
if (!class)
return NULL;
if (!class->p) {
WARN(1, "%s called for class '%s' before it was initialized",
__func__, class->name);
return NULL;
}
class_dev_iter_init(&iter, class, start, NULL);
while ((dev = class_dev_iter_next(&iter))) {
if (match(dev, data)) {
get_device(dev);
break;
}
}
class_dev_iter_exit(&iter);
return dev;
}
int class_interface_register(struct class_interface *class_intf)
{
struct class *parent;
struct class_dev_iter iter;
struct device *dev;
if (!class_intf || !class_intf->class)
return -ENODEV;
parent = class_get(class_intf->class);
if (!parent)
return -EINVAL;
mutex_lock(&parent->p->class_mutex);
list_add_tail(&class_intf->node, &parent->p->class_interfaces);
if (class_intf->add_dev) {
class_dev_iter_init(&iter, parent, NULL, NULL);
while ((dev = class_dev_iter_next(&iter)))
class_intf->add_dev(dev, class_intf);
class_dev_iter_exit(&iter);
}
mutex_unlock(&parent->p->class_mutex);
return 0;
}
class->class_mutex
进行保护。class->class_mutex
是用来保护class的类接口链表。对于简单的list_head来说,这种mutex保护是应该的。但对于武装到牙齿的klist来说,就完全不必要了,因为klist内置了spinlock来完成互斥的操作。所以之前其它的klist链表操作都没有mutex保护。void class_interface_unregister(struct class_interface *class_intf)
{
struct class *parent = class_intf->class;
struct class_dev_iter iter;
struct device *dev;
if (!parent)
return;
mutex_lock(&parent->p->class_mutex);
list_del_init(&class_intf->node);
if (class_intf->remove_dev) {
class_dev_iter_init(&iter, parent, NULL, NULL);
while ((dev = class_dev_iter_next(&iter)))
class_intf->remove_dev(dev, class_intf);
class_dev_iter_exit(&iter);
}
mutex_unlock(&parent->p->class_mutex);
class_put(parent);
}
struct class_compat {
struct kobject *kobj;
};
/**
* class_compat_register - register a compatibility class
* @name: the name of the class
*
* Compatibility class are meant as a temporary user-space compatibility
* workaround when converting a family of class devices to a bus devices.
*/
struct class_compat *class_compat_register(const char *name)
{
struct class_compat *cls;
cls = kmalloc(sizeof(struct class_compat), GFP_KERNEL);
if (!cls)
return NULL;
cls->kobj = kobject_create_and_add(name, &class_kset->kobj);
if (!cls->kobj) {
kfree(cls);
return NULL;
}
return cls;
}
void class_compat_unregister(struct class_compat *cls)
{
kobject_put(cls->kobj);
kfree(cls);
}
在/sys/class
下面,除了class类型的,还有表现起来和class相同的class_compat类型。其实class_compat就是单单为了显示一个目录,不会定义对应的属性或者函数。
/**
* class_compat_create_link - create a compatibility class device link to
* a bus device
* @cls: the compatibility class
* @dev: the target bus device
* @device_link: an optional device to which a "device" link should be created
*/
int class_compat_create_link(struct class_compat *cls, struct device *dev,
struct device *device_link)
{
int error;
error = sysfs_create_link(cls->kobj, &dev->kobj, dev_name(dev));
if (error)
return error;
/*
* Optionally add a "device" link (typically to the parent), as a
* class device would have one and we want to provide as much
* backwards compatibility as possible.
*/
if (device_link) {
error = sysfs_create_link(&dev->kobj, &device_link->kobj,
"device");
if (error)
sysfs_remove_link(cls->kobj, dev_name(dev));
}
return error;
}
void class_compat_remove_link(struct class_compat *cls, struct device *dev,
struct device *device_link)
{
if (device_link)
sysfs_remove_link(&dev->kobj, "device");
sysfs_remove_link(cls->kobj, dev_name(dev));
}