当前位置: 首页 > 工具软件 > Some Chess > 使用案例 >

Codeforces 559C Gerald and Giant Chess(dp+组合数)

龙令雪
2023-12-01

题面

Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on an h × w field, and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win?

The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process.

Input

The first line of the input contains three integers: h, w, n — the sides of the board and the number of black cells (1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000).

Next n lines contain the description of black cells. The i-th of these lines contains numbers ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w) — the number of the row and column of the i-th cell.

It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.

Output

Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo 109 + 7.

Examples

Input

3 4 2
2 2
2 3

Output

2

Input

100 100 3
15 16
16 15
99 88

Output

545732279

题目链接

Codeforces_559C

参考链接

思路参考: codeforces 559C Gerald and Giant Chess(dp+组合数学) author:黎辰

题目简述

从位置(1,1)到位置(h,w),在不踩黑子的前提下,一共有多少条路

node[i].dp表示从(1,1)到(node[i].x,node[i].y)黑子,在不踩黑子的前提下,一共有多少条路

先算全集node[i].dp=C(node[i].x-1,node[i].x+node[i].y-2);

再减掉不合法情况,不合法情况:node[j].dp*C(node[i].x-node[j].x,node[i].x-node[j].x+node[i].y-node[j].y)%mod;

最后把终点(h,w)也当作黑子一起计算。

程序分析

#define maxn 200005/**200005为n最大值**/
long long factorial[maxn];/**阶乘**/
struct Node/**黑格子**/
{
    int x,y;
    long long dp;
}node[2005];
bool cmp(const Node &a,const Node &b)/**排序规则**/
long long pow(long long a,long long b)/**快速幂**/
void init()/**初始化阶乘**/
long long C(int m,int n)/**费马小定理乘逆元+求组合数**/

程序

#include<stdio.h>
#include<algorithm>
using namespace std;
#define maxn 200005
/**200005为n最大值**/
const long long mod=1e9+7;
long long factorial[maxn];/**阶乘**/

struct Node
{
    int x,y;
    long long dp;
}node[2005];
bool cmp(const Node &a,const Node &b)
{
    if(a.x!=b.x)
        return a.x<b.x;
    else
        return a.y<b.y;
}

long long pow(long long a,long long b)
{
    long long sum=1;
    a=a%mod;
    while(b>0)
    {
        if(b%2==1)
            sum=(sum*a)%mod;
        b/=2;
        a=(a*a)%mod;
    }
    return sum;
}

void init()
{
    factorial[0]=1;
    factorial[1]=1;
    for(int i=2;i<maxn;i++)
        factorial[i]=factorial[i-1]*i%mod;
}

long long C(int m,int n)
{
    return  factorial[n]*pow(factorial[m]*factorial[n-m]%mod,mod-2)%mod;
}

int main()
{
    init();
    int h,w,n;
    scanf("%d%d%d",&h,&w,&n);
    for(int i=0;i<n;i++)
    {
        scanf("%d%d",&node[i].x,&node[i].y);
    }
    node[n].x=h,node[n].y=w;
    n++;
    sort(node,node+n,cmp);
    for(int i=0;i<n;i++)
    {
        node[i].dp=C(node[i].x-1,node[i].x+node[i].y-2);
        for(int j=0;j<n;j++)
        {
            if(node[j].x==node[i].x&&node[j].y==node[i].y)
                break;
            if(node[j].x<=node[i].x&&node[j].y<=node[i].y)
                node[i].dp-=node[j].dp*C(node[i].x-node[j].x,node[i].x-node[j].x+node[i].y-node[j].y)%mod;
        }
        node[i].dp%=mod;
        node[i].dp+=mod;
        node[i].dp%=mod;
    }
    printf("%lld",node[n-1].dp);
    return 0;
}

 

 类似资料: