当前位置: 首页 > 工具软件 > f32c > 使用案例 >

html rfftq15.gif,myCortex-STM32F4/arm_rfft_fast_f32.c at master · withrobot/myCortex-STM32F4 · GitHu...

戚建白
2023-12-01

/* ----------------------------------------------------------------------

* Copyright (C) 2010-2013 ARM Limited. All rights reserved.

*

* $Date: 17. January 2013

* $Revision: V1.4.1

*

* Project: CMSIS DSP Library

* Title: arm_rfft_f32.c

*

* Description:RFFT & RIFFT Floating point process function

*

* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* - Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* - Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

* - Neither the name of ARM LIMITED nor the names of its contributors

* may be used to endorse or promote products derived from this

* software without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

* POSSIBILITY OF SUCH DAMAGE.

* -------------------------------------------------------------------- */

#include "arm_math.h"

void stage_rfft_f32(

arm_rfft_fast_instance_f32 * S,

float32_t * p, float32_t * pOut)

{

uint32_t k; /* Loop Counter */

float32_t twR, twI; /* RFFT Twiddle coefficients */

float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */

float32_t *pA = p; /* increasing pointer */

float32_t *pB = p; /* decreasing pointer */

float32_t xAR, xAI, xBR, xBI;/* temporary variables */

float32_t t1a, t1b; /* temporary variables */

float32_t p0, p1, p2, p3; /* temporary variables */

k = (S->Sint).fftLen - 1;

/* Pack first and last sample of the frequency domain together */

xBR = pB[0];

xBI = pB[1];

xAR = pA[0];

xAI = pA[1];

twR = *pCoeff++ ;

twI = *pCoeff++ ;

// U1 = XA(1) + XB(1); % It is real

t1a = xBR + xAR ;

// U2 = XB(1) - XA(1); % It is imaginary

t1b = xBI + xAI ;

// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);

// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);

*pOut++ = 0.5f * ( t1a + t1b );

*pOut++ = 0.5f * ( t1a - t1b );

// XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) ));

pB = p + 2*k;

pA += 2;

do

{

/*

function X = my_split_rfft(X, ifftFlag)

% X is a series of real numbers

L = length(X);

XC = X(1:2:end) +i*X(2:2:end);

XA = fft(XC);

XB = conj(XA([1 end:-1:2]));

TW = i*exp(-2*pi*i*[0:L/2-1]/L).';

for l = 2:L/2

XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));

end

XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));

X = XA;

*/

xBI = pB[1];

xBR = pB[0];

xAR = pA[0];

xAI = pA[1];

twR = *pCoeff++;

twI = *pCoeff++;

t1a = xBR - xAR ;

t1b = xBI + xAI ;

// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);

// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);

p0 = twR * t1a;

p1 = twI * t1a;

p2 = twR * t1b;

p3 = twI * t1b;

*pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR

*pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI

pA += 2;

pB -= 2;

k--;

} while(k > 0u);

}

/* Prepares data for inverse cfft */

void merge_rfft_f32(

arm_rfft_fast_instance_f32 * S,

float32_t * p, float32_t * pOut)

{

uint32_t k;/* Loop Counter */

float32_t twR, twI;/* RFFT Twiddle coefficients */

float32_t *pCoeff = S->pTwiddleRFFT;/* Points to RFFT Twiddle factors */

float32_t *pA = p;/* increasing pointer */

float32_t *pB = p;/* decreasing pointer */

float32_t xAR, xAI, xBR, xBI;/* temporary variables */

float32_t t1a, t1b, r, s, t, u;/* temporary variables */

k = (S->Sint).fftLen - 1;

xAR = pA[0];

xAI = pA[1];

pCoeff += 2 ;

*pOut++ = 0.5f * ( xAR + xAI );

*pOut++ = 0.5f * ( xAR - xAI );

pB = p + 2*k ;

pA += 2 ;

while(k > 0u)

{

/* G is half of the frequency complex spectrum */

//for k = 2:N

// Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));

xBI = pB[1] ;

xBR = pB[0] ;

xAR = pA[0];

xAI = pA[1];

twR = *pCoeff++;

twI = *pCoeff++;

t1a = xAR - xBR ;

t1b = xAI + xBI ;

r = twR * t1a;

s = twI * t1b;

t = twI * t1a;

u = twR * t1b;

// real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);

// imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);

*pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR

*pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI

pA += 2;

pB -= 2;

k--;

}

}

/**

* @ingroup groupTransforms

*/

/**

* @defgroup Fast Real FFT Functions

*

* \par

* The CMSIS DSP library includes specialized algorithms for computing the

* FFT of real data sequences. The FFT is defined over complex data but

* in many applications the input is real. Real FFT algorithms take advantage

* of the symmetry properties of the FFT and have a speed advantage over complex

* algorithms of the same length.

* \par

* The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage.

* \par

* The real length N forward FFT of a sequence is computed using the steps shown below.

* \par

* \image html RFFT.gif "Real Fast Fourier Transform"

* \par

* The real sequence is initially treated as if it were complex to perform a CFFT.

* Later, a processing stage reshapes the data to obtain half of the frequency spectrum

* in complex format. Except the first complex number that contains the two real numbers

* X[0] and X[N/2] all the data is complex. In other words, the first complex sample

* contains two real values packed.

* \par

* The input for the inverse RFFT should keep the same format as the output of the

* forward RFFT. A first processing stage pre-process the data to later perform an

* inverse CFFT.

* \par

* \image html RIFFT.gif "Real Inverse Fast Fourier Transform"

* \par

* The algorithms for floating-point, Q15, and Q31 data are slightly different

* and we describe each algorithm in turn.

* \par Floating-point

* The main functions are arm_rfft_fast_f32()

* and arm_rfft_fast_init_f32(). The older functions

* arm_rfft_f32() and arm_rfft_init_f32() have been

* deprecated but are still documented.

* \par

* The FFT of a real N-point sequence has even symmetry in the frequency

* domain. The second half of the data equals the conjugate of the first half

* flipped in frequency:

*

 
 

*X[0] - real data

*X[1] - complex data

*X[2] - complex data

*...

*X[fftLen/2-1] - complex data

*X[fftLen/2] - real data

*X[fftLen/2+1] - conjugate of X[fftLen/2-1]

*X[fftLen/2+2] - conjugate of X[fftLen/2-2]

*...

*X[fftLen-1] - conjugate of X[1]

*

* Looking at the data, we see that we can uniquely represent the FFT using only

*

 
 

*N/2+1 samples:

*X[0] - real data

*X[1] - complex data

*X[2] - complex data

*...

*X[fftLen/2-1] - complex data

*X[fftLen/2] - real data

*

* Looking more closely we see that the first and last samples are real valued.

* They can be packed together and we can thus represent the FFT of an N-point

* real sequence by N/2 complex values:

*

 
 

*X[0],X[N/2] - packed real data: X[0] + jX[N/2]

*X[1] - complex data

*X[2] - complex data

*...

*X[fftLen/2-1] - complex data

*

* The real FFT functions pack the frequency domain data in this fashion. The

* forward transform outputs the data in this form and the inverse transform

* expects input data in this form. The function always performs the needed

* bitreversal so that the input and output data is always in normal order. The

* functions support lengths of [32, 64, 128, ..., 4096] samples.

* \par

* The forward and inverse real FFT functions apply the standard FFT scaling; no

* scaling on the forward transform and 1/fftLen scaling on the inverse

* transform.

* \par Q15 and Q31

* The real algorithms are defined in a similar manner and utilize N/2 complex

* transforms behind the scenes. In the case of fixed-point data, a radix-4

* complex transform is performed and this limits the allows sequence lengths to

* 128, 512, and 2048 samples.

* \par

* TBD. We need to document input and output order of data.

* \par

* The complex transforms used internally include scaling to prevent fixed-point

* overflows. The overall scaling equals 1/(fftLen/2).

* \par

* A separate instance structure must be defined for each transform used but

* twiddle factor and bit reversal tables can be reused.

* \par

* There is also an associated initialization function for each data type.

* The initialization function performs the following operations:

* - Sets the values of the internal structure fields.

* - Initializes twiddle factor table and bit reversal table pointers.

* - Initializes the internal complex FFT data structure.

* \par

* Use of the initialization function is optional.

* However, if the initialization function is used, then the instance structure

* cannot be placed into a const data section. To place an instance structure

* into a const data section, the instance structure should be manually

* initialized as follows:

*

 
 

*arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};

*arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};

*

* where fftLenReal is the length of the real transform;

* fftLenBy2 length of the internal complex transform.

* ifftFlagR Selects forward (=0) or inverse (=1) transform.

* bitReverseFlagR Selects bit reversed output (=0) or normal order

* output (=1).

* twidCoefRModifier stride modifier for the twiddle factor table.

* The value is based on the FFT length;

* pTwiddleARealpoints to the A array of twiddle coefficients;

* pTwiddleBRealpoints to the B array of twiddle coefficients;

* pCfft points to the CFFT Instance structure. The CFFT structure

* must also be initialized. Refer to arm_cfft_radix4_f32() for details regarding

* static initialization of the complex FFT instance structure.

*/

/**

* @addtogroup RealFFT

* @{

*/

/**

* @brief Processing function for the floating-point real FFT.

* @param[in] *S points to an arm_rfft_fast_instance_f32 structure.

* @param[in] *p points to the input buffer.

* @param[in] *pOut points to an arm_rfft_fast_instance_f32 structure.

* @param[in] ifftFlag RFFT if flag is 0, RIFFT if flag is 1

* @return none.

*/

void arm_rfft_fast_f32(

arm_rfft_fast_instance_f32 * S,

float32_t * p, float32_t * pOut,

uint8_t ifftFlag)

{

arm_cfft_instance_f32 * Sint = &(S->Sint);

Sint->fftLen = S->fftLenRFFT / 2;

/* Calculation of Real FFT */

if(ifftFlag)

{

/* Real FFT comression */

merge_rfft_f32(S, p, pOut);

/* Complex radix-4 IFFT process */

arm_cfft_f32( Sint, pOut, ifftFlag, 1);

}

else

{

/* Calculation of RFFT of input */

arm_cfft_f32( Sint, p, ifftFlag, 1);

/* Real FFT extraction */

stage_rfft_f32(S, p, pOut);

}

}

 类似资料: