前言:在 Node.js 中,我们有时候需要抓取进程堆快照来判断是否有内存泄漏,本文介绍Node.js 中抓取堆快照的实现。
首先来看一下 Node.js 中如何抓取堆快照。
const { Session } = require('inspector');
const session = new Session();
let chunk = '';
const cb = (result) => {
chunk += result.params.chunk;
};
session.on('HeapProfiler.addHeapSnapshotChunk', cb);
session.post('HeapProfiler.takeHeapSnapshot', (err, r) => {
session.off('HeapProfiler.addHeapSnapshotChunk', cb);
console.log(err || chunk);
});
下面看一下 HeapProfiler.addHeapSnapshotChunk 命令的实现。
{
v8_crdtp::SpanFrom("takeHeapSnapshot"),
&DomainDispatcherImpl::takeHeapSnapshot
}
对应 DomainDispatcherImpl::takeHeapSnapshot 函数。
void DomainDispatcherImpl::takeHeapSnapshot(const v8_crdtp::Dispatchable& dispatchable)
{
std::unique_ptr<DomainDispatcher::WeakPtr> weak = weakPtr();
// 抓取快照
DispatchResponse response = m_backend->takeHeapSnapshot(std::move(params.reportProgress), std::move(params.treatGlobalObjectsAsRoots), std::move(params.captureNumericValue));
// 抓取完毕,响应
if (weak->get())
weak->get()->sendResponse(dispatchable.CallId(), response);
return;
}
上面代码中 m_backend 是 V8HeapProfilerAgentImpl 对象。
Response V8HeapProfilerAgentImpl::takeHeapSnapshot(
Maybe<bool> reportProgress, Maybe<bool> treatGlobalObjectsAsRoots,
Maybe<bool> captureNumericValue) {
v8::HeapProfiler* profiler = m_isolate->GetHeapProfiler();
// 抓取快照
const v8::HeapSnapshot* snapshot = profiler->TakeHeapSnapshot(
progress.get(), &resolver, treatGlobalObjectsAsRoots.fromMaybe(true),
captureNumericValue.fromMaybe(false));
// 抓取完毕后通知调用方
HeapSnapshotOutputStream stream(&m_frontend);
snapshot->Serialize(&stream);
const_cast<v8::HeapSnapshot*>(snapshot)->Delete();
// HeapProfiler.takeHeapSnapshot 命令结束,回调调用方
return Response::Success();
}
我们重点看一下 profiler->TakeHeapSnapshot。
const HeapSnapshot* HeapProfiler::TakeHeapSnapshot(
ActivityControl* control, ObjectNameResolver* resolver,
bool treat_global_objects_as_roots, bool capture_numeric_value) {
return reinterpret_cast<const HeapSnapshot*>(
reinterpret_cast<i::HeapProfiler*>(this)->TakeSnapshot(
control, resolver, treat_global_objects_as_roots,
capture_numeric_value));
}
继续看真正的 TakeSnapshot。
HeapSnapshot* HeapProfiler::TakeSnapshot(
v8::ActivityControl* control,
v8::HeapProfiler::ObjectNameResolver* resolver,
bool treat_global_objects_as_roots, bool capture_numeric_value) {
is_taking_snapshot_ = true;
HeapSnapshot* result = new HeapSnapshot(this, treat_global_objects_as_roots,
capture_numeric_value);
{
HeapSnapshotGenerator generator(result, control, resolver, heap());
if (!generator.GenerateSnapshot()) {
delete result;
result = nullptr;
} else {
snapshots_.emplace_back(result);
}
}
return result;
}
我们看到新建了一个 HeapSnapshot 对象,然后通过 HeapSnapshotGenerator 对象的 GenerateSnapshot 抓取快照。看一下 GenerateSnapshot。
bool HeapSnapshotGenerator::GenerateSnapshot() {
Isolate* isolate = Isolate::FromHeap(heap_);
base::Optional<HandleScope> handle_scope(base::in_place, isolate);
v8_heap_explorer_.CollectGlobalObjectsTags();
// 抓取前先回收不用内存,保证看到的是存活的对象,否则影响内存泄漏的分析
heap_->CollectAllAvailableGarbage(GarbageCollectionReason::kHeapProfiler);
// 收集内存信息
snapshot_->AddSyntheticRootEntries();
FillReferences();
snapshot_->FillChildren();
return true;
}
GenerateSnapshot 的逻辑是首先进行GC 回收不用的内存,然后收集 GC 后的内存信息到 HeapSnapshot 对象。接着看收集完后的逻辑。
HeapSnapshotOutputStream stream(&m_frontend);
snapshot->Serialize(&stream);
HeapSnapshotOutputStream 是用于通知调用方收集的数据(通过 m_frontend)。
explicit HeapSnapshotOutputStream(protocol::HeapProfiler::Frontend* frontend)
: m_frontend(frontend) {}
void EndOfStream() override {}
int GetChunkSize() override { return 102400; }
WriteResult WriteAsciiChunk(char* data, int size) override {
m_frontend->addHeapSnapshotChunk(String16(data, size));
m_frontend->flush();
return kContinue;
}
HeapSnapshotOutputStream 通过 WriteAsciiChunk 告诉调用方收集的数据,但是目前我们还没有数据源,下面看看数据源怎么来的。
snapshot->Serialize(&stream);
看一下 Serialize。
void HeapSnapshot::Serialize(OutputStream* stream,
HeapSnapshot::SerializationFormat format) const {
i::HeapSnapshotJSONSerializer serializer(ToInternal(this));
serializer.Serialize(stream);
}
最终调了 HeapSnapshotJSONSerializer 的 Serialize。
void HeapSnapshotJSONSerializer::Serialize(v8::OutputStream* stream) {
// 写者
writer_ = new OutputStreamWriter(stream);
// 开始写
SerializeImpl();
}
我们看一下 SerializeImpl。
void HeapSnapshotJSONSerializer::SerializeImpl() {
DCHECK_EQ(0, snapshot_->root()->index());
writer_->AddCharacter('{');
writer_->AddString("\"snapshot\":{");
SerializeSnapshot();
if (writer_->aborted()) return;
writer_->AddString("},\n");
writer_->AddString("\"nodes\":[");
SerializeNodes();
if (writer_->aborted()) return;
writer_->AddString("],\n");
writer_->AddString("\"edges\":[");
SerializeEdges();
if (writer_->aborted()) return;
writer_->AddString("],\n");
writer_->AddString("\"trace_function_infos\":[");
SerializeTraceNodeInfos();
if (writer_->aborted()) return;
writer_->AddString("],\n");
writer_->AddString("\"trace_tree\":[");
SerializeTraceTree();
if (writer_->aborted()) return;
writer_->AddString("],\n");
writer_->AddString("\"samples\":[");
SerializeSamples();
if (writer_->aborted()) return;
writer_->AddString("],\n");
writer_->AddString("\"locations\":[");
SerializeLocations();
if (writer_->aborted()) return;
writer_->AddString("],\n");
writer_->AddString("\"strings\":[");
SerializeStrings();
if (writer_->aborted()) return;
writer_->AddCharacter(']');
writer_->AddCharacter('}');
writer_->Finalize();
}
SerializeImpl 函数的逻辑就是把快照数据通过 OutputStreamWriter 对象 writer_ 写到 writer_ 持有的 stream 中。写的数据有很多种类型,这里以 AddCharacter 为例。
void AddCharacter(char c) {
chunk_[chunk_pos_++] = c;
MaybeWriteChunk();
}
每次写的时候都会判断是不达到阈值,是的话则先推给调用方。看一下 MaybeWriteChunk。
void MaybeWriteChunk() {
if (chunk_pos_ == chunk_size_) {
WriteChunk();
}
}
void WriteChunk() {
// stream 控制是否还需要写入,通过 kAbort 和 kContinue
if (stream_->WriteAsciiChunk(chunk_.begin(), chunk_pos_) ==
v8::OutputStream::kAbort)
aborted_ = true;
chunk_pos_ = 0;
}
我们看到最终通过 stream 的 WriteAsciiChunk 写到 stream 中。
WriteResult WriteAsciiChunk(char* data, int size) override {
m_frontend->addHeapSnapshotChunk(String16(data, size));
m_frontend->flush();
return kContinue;
}
WriteAsciiChunk 调用 addHeapSnapshotChunk 通知调用方。
void Frontend::addHeapSnapshotChunk(const String& chunk)
{
v8_crdtp::ObjectSerializer serializer;
serializer.AddField(v8_crdtp::MakeSpan("chunk"), chunk);
frontend_channel_->SendProtocolNotification(v8_crdtp::CreateNotification("HeapProfiler.addHeapSnapshotChunk", serializer.Finish()));
}
触发 HeapProfiler.addHeapSnapshotChunk 事件,并传入快照的数据,最终触发 JS 层的事件。再看一下文章开头的代码。
let chunk = '';
const cb = (result) => {
chunk += result.params.chunk;
};
session.on('HeapProfiler.addHeapSnapshotChunk', cb);
session.post('HeapProfiler.takeHeapSnapshot', (err, r) => {
session.off('HeapProfiler.addHeapSnapshotChunk', cb);
console.log(err || chunk);
});
这个过程是否清晰了很多。从过程中也看到,抓取快照虽然传入了回调,但是其实是以同步的方式执行的,因为提交 HeapProfiler.takeHeapSnapshot 命令后,V8 就开始收集内存,然后不断触发 HeapProfiler.addHeapSnapshotChunk 事件,直到堆数据写完,然后执行 JS 回调。
总结:整个过程不算复杂,因为我们没有涉及到堆内存管理那部分,V8 Inspector 提供了很多命令,有时间的话后续再分析其他的命令。