Spark 是一个用来实现快速而通用的集群计算的平台。
在速度方面,Spark 扩展了广泛使用的 MapReduce 计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理。 在处理大规模数据集时,速度是非常重要的。速度快就意味着我们可以进行交互式的数据操作,否则我们每次操作就需要等待数分钟甚至数小时。
Spark 的一个主要特点就是能够在内存中进行计算,因而更快。不过即使是必须在磁盘上进行的复杂计算,Spark 依然比 MapReduce 更加高效。
tar -zxf spark-2.2.0.tgz -C /opt/modules/
2)spark2.2编译所需要的环境:Maven3.3.9和Java8
tar -zxf jdk8u11-linux-x64.tar.gz -C /opt/modules/
b)JAVA_HOME配置/etc/profile
export JAVA_HOME=/opt/modules/jdk1.8.0_11
export PATH=$PATH:$JAVA_HOME/bin
编辑退出之后,使之生效
source /etc/profile
c)如果遇到不能加载当前版本的问题
rpm -qa|grep jdk
rpm -e --nodeps jdk版本
d)下载并解压Maven
tar -zxf apache-maven-3.3.9-bin.tar.gz -C /opt/modules/
配置MAVEN_HOME(/etc/profile)
export MAVEN_HOME=/opt/modules/apache-maven-3.3.9
export PATH=$PATH:$MAVEN_HOME/bin
export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=1024M -XX:ReservedCodeCacheSize=1024M"
编辑退出之后,使之生效
source /etc/profile
查看maven版本
mvn -version
e)编辑make-distribution.sh内容,可以让编译速度更快
VERSION=2.2.0
SCALA_VERSION=2.11.8
SPARK_HADOOP_VERSION=2.6.4
# 支持spark on hive
SPARK_HIVE=1
4)编译前安装一些压缩解压缩工具
yum install -y snappy snappy-devel bzip2 bzip2-devel lzo lzo-devel lzop openssl openssl-devel
5)maven编译,仅仅是为了编译源码, 编译后可以导入idea中
mvn clean package -Phadoop-2.6 -Dhadoop.version=2.6.4 -Phive -Phive-thriftserver -Pyarn -DskipTests
6)通过make-distribution.sh源码编译spark,打包后可以丢到生产环境了
./dev/make-distribution.sh --name custom-spark --tgz -Phadoop-2.6 -Dhadoop.version=2.6.4 -Phive -Phive-thriftserver -Pyarn -DskipTests
编译完成之后解压
tar -zxf spark-2.2.0-bin-custom-spark.tgz -C /opt/modules/
tar -zxf scala-2.11.8.tgz -C /opt/modules/
3)配置环境变量(/etc/profile)
export SCALA_HOME=/opt/modules/scala-2.11.8
export PATH=$PATH:$SCALA_HOME/bin
4)编辑退出之后,使之生效
source /etc/profile
./bin/spark-shell
scala> val textFile = spark.read.textFile("README.md")
textFile: org.apache.spark.sql.Dataset[String] = [value: string]
scala> textFile.count()
res0: Long = 126
scala> textFile.first()
res1: String = # Apache Spark
scala> val linesWithSpark = textFile.filter(line => line.contains("Spark"))
linesWithSpark: org.apache.spark.sql.Dataset[String] = [value: string]
scala> textFile.filter(line => line.contains("Spark")).count() // How many lines contain "Spark"?
res3: Long = 15
2)词频统计
hadoop storm spark
hbase spark flume
spark dajiangtai spark
hdfs mapreduce spark
hive hdfs solr
spark flink storm
hbase storm es
solr dajiangtai scala
linux java scala
python spark mlib
kafka spark mysql
spark es scala
azkaban oozie mysql
storm storm storm
scala mysql es
spark spark spark
b)spark-shell 词频统计
./bin/spark-shell
scala> val rdd = spark.read.textFile("/opt/datas/stu.txt")
# 词频统计
scala> val lines = rdd.flatmap(x => x.split(" ")).map(x => (x,1)).rdd.reduceBykey((a,b) => (a+b)).collect
# 对词频进行排序
scala> val lines = rdd.flatmap(x => x.split(" ")).map(x => (x,1)).rdd.reduceBykey((a,b) => (a+b)).map(x =>(x._2,x._1)).sortBykey().map(x => (x._2,x._1)).collect