当前位置: 首页 > 工具软件 > Lagrange > 使用案例 >

Euler Lagrange Equation

赵嘉赐
2023-12-01

Euler Lagrange Equation

描述

求解有界泛函的极值: J = F [ y ( x ) ] J = F[y(x)] J=F[y(x)], y ( x ) y(x) y(x)是一个可变的函数,例如可能是任意一条连接两点的曲线

例子

  1. Lagrange mechanics motion: s [ q ( t ) ] = ∫ t 0 t 1 L ( t , q , q ˙ ) d t s[q(t)] = \int_{t0}^{t1}L(t, q, \dot{q})dt s[q(t)]=t0t1L(t,q,q˙)dt
  2. Path planning: s [ y ( x ) ] = ∫ x 0 x 1 F ( t , y , y ˙ ) d x s[y(x)] = \int_{x0}^{x1}F(t, y, \dot{y})dx s[y(x)]=x0x1F(t,y,y˙)dx

公式推导

  1. 借助扰动函数 y = y ∗ + ε η ( x ) y = y^{*} + \varepsilon\eta(x) y=y+εη(x),推导:
    J ′ ( ε ) = ∫ ∂ F ∂ y ∂ y ∂ ε + ∂ F ∂ y ˙ ∂ y ˙ ∂ ε d x = ∫ ∂ F ∂ y η ( x ) + ∂ F ∂ y ˙ η ( x ) ˙ d x = 0 J^{\prime}(\varepsilon) = \int\frac{\partial F}{\partial y}\frac{\partial y}{\partial \varepsilon} + \frac{\partial F}{\partial \dot{y}}\frac{\partial \dot{y}}{\partial \varepsilon}dx= \int\frac{\partial F}{\partial y}\eta(x) + \frac{\partial F}{\partial \dot{y}}\dot{\eta(x)}dx= 0 J(ε)=yFεy+y˙Fεy˙dx=yFη(x)+y˙Fη(x)˙dx=0

  2. 起终点的时刻和状态都确定:
    ∫ ∂ F ∂ y ˙ η ( x ) ˙ d x = ( ∂ F ∂ y ˙ η ( x ) ) ∣ x 0 x 1 − ∫ d d x η ( x ) ∂ F ∂ y ˙ d x = − ∫ d d x η ( x ) ∂ F ∂ y ˙ d x \int\frac{\partial F}{\partial \dot{y}}\dot{\eta(x)}dx=(\frac{\partial F}{\partial \dot{y}}\eta(x))\mid^{x1}_{x0} - \int\frac{\mathrm{d}}{\mathrm{dx}}\eta(x)\frac{\partial F}{\partial \dot{y}}dx = -\int\frac{\mathrm{d}}{\mathrm{dx}}\eta(x)\frac{\partial F}{\partial \dot{y}}dx y˙Fη(x)˙dx=(y˙Fη(x))x0x1dxdη(x)y˙Fdx=dxdη(x)y˙Fdx
    η ( x 0 ) = η ( x 1 ) = 0 \eta(x0) = \eta(x1) = 0 η(x0)=η(x1)=0 ==> ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) = 0 \frac{\partial F}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x}(\frac{\partial F}{\partial {y^{\prime}}}) = 0 yFdxd(yF)=0

  3. 如果终点时刻缺点状态不确定,需要额外满足横截条件
    η ( x 0 ) = 0 , η ( x 1 ) ≠ 0 \eta(x0) = 0, \eta(x1) \ne 0 η(x0)=0,η(x1)=0 ==> ∂ F ∂ y ˙ ∣ t 1 = 0 \frac{\partial F}{\partial \dot{y}}|_{t1} = 0 y˙Ft1=0

参考

[1]: https://zhuanlan.zhihu.com/p/148949128
[2]: https://www.youtube.com/watch?v=V0wx0JBEgZc
[3]: 最优控制理论基础-吕显瑞,黄庆道

 类似资料:

相关阅读

相关文章

相关问答