求解有界泛函的极值: J = F [ y ( x ) ] J = F[y(x)] J=F[y(x)], y ( x ) y(x) y(x)是一个可变的函数,例如可能是任意一条连接两点的曲线
借助扰动函数
y
=
y
∗
+
ε
η
(
x
)
y = y^{*} + \varepsilon\eta(x)
y=y∗+εη(x),推导:
J
′
(
ε
)
=
∫
∂
F
∂
y
∂
y
∂
ε
+
∂
F
∂
y
˙
∂
y
˙
∂
ε
d
x
=
∫
∂
F
∂
y
η
(
x
)
+
∂
F
∂
y
˙
η
(
x
)
˙
d
x
=
0
J^{\prime}(\varepsilon) = \int\frac{\partial F}{\partial y}\frac{\partial y}{\partial \varepsilon} + \frac{\partial F}{\partial \dot{y}}\frac{\partial \dot{y}}{\partial \varepsilon}dx= \int\frac{\partial F}{\partial y}\eta(x) + \frac{\partial F}{\partial \dot{y}}\dot{\eta(x)}dx= 0
J′(ε)=∫∂y∂F∂ε∂y+∂y˙∂F∂ε∂y˙dx=∫∂y∂Fη(x)+∂y˙∂Fη(x)˙dx=0
起终点的时刻和状态都确定:
∫
∂
F
∂
y
˙
η
(
x
)
˙
d
x
=
(
∂
F
∂
y
˙
η
(
x
)
)
∣
x
0
x
1
−
∫
d
d
x
η
(
x
)
∂
F
∂
y
˙
d
x
=
−
∫
d
d
x
η
(
x
)
∂
F
∂
y
˙
d
x
\int\frac{\partial F}{\partial \dot{y}}\dot{\eta(x)}dx=(\frac{\partial F}{\partial \dot{y}}\eta(x))\mid^{x1}_{x0} - \int\frac{\mathrm{d}}{\mathrm{dx}}\eta(x)\frac{\partial F}{\partial \dot{y}}dx = -\int\frac{\mathrm{d}}{\mathrm{dx}}\eta(x)\frac{\partial F}{\partial \dot{y}}dx
∫∂y˙∂Fη(x)˙dx=(∂y˙∂Fη(x))∣x0x1−∫dxdη(x)∂y˙∂Fdx=−∫dxdη(x)∂y˙∂Fdx
η
(
x
0
)
=
η
(
x
1
)
=
0
\eta(x0) = \eta(x1) = 0
η(x0)=η(x1)=0 ==>
∂
F
∂
y
−
d
d
x
(
∂
F
∂
y
′
)
=
0
\frac{\partial F}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x}(\frac{\partial F}{\partial {y^{\prime}}}) = 0
∂y∂F−dxd(∂y′∂F)=0
如果终点时刻缺点状态不确定,需要额外满足横截条件
η
(
x
0
)
=
0
,
η
(
x
1
)
≠
0
\eta(x0) = 0, \eta(x1) \ne 0
η(x0)=0,η(x1)=0 ==>
∂
F
∂
y
˙
∣
t
1
=
0
\frac{\partial F}{\partial \dot{y}}|_{t1} = 0
∂y˙∂F∣t1=0
[1]: https://zhuanlan.zhihu.com/p/148949128
[2]: https://www.youtube.com/watch?v=V0wx0JBEgZc
[3]: 最优控制理论基础-吕显瑞,黄庆道