#include <Wire.h> // I2C library, gyroscope
// Accelerometer ADXL345
#define ACC (0x53) //ADXL345 ACC address
#define A_TO_READ (6) //num of bytes we are going to read each time (two bytes for each axis)
// Gyroscope ITG3200
#define GYRO 0x68 // gyro address, binary = 11101000 when AD0 is connected to Vcc (see schematics of your breakout board)
#define G_SMPLRT_DIV 0x15
#define G_DLPF_FS 0x16
#define G_INT_CFG 0x17
#define G_PWR_MGM 0x3E
#define G_TO_READ 8 // 2 bytes for each axis x, y, z
// offsets are chip specific.
int a_offx = 0;
int a_offy = 0;
int a_offz = 0;
bool flag_calib_failed=1;
int g_offx = 0;
int g_offy = 0;
int g_offz = 0;
int calib_i = 0;
char str[512];
void initAcc() {
//Turning on the ADXL345
writeTo(ACC, 0x2D, 0);
writeTo(ACC, 0x2D, 16);
writeTo(ACC, 0x2D, 8);
//by default the device is in +-2g range reading
}
void getAccelerometerData(int* result) {
int regAddress = 0x32; //first axis-acceleration-data register on the ADXL345
byte buff[A_TO_READ];
readFrom(ACC, regAddress, A_TO_READ, buff); //read the acceleration data from the ADXL345
//each axis reading comes in 10 bit resolution, ie 2 bytes. Least Significat Byte first!!
//thus we are converting both bytes in to one int
result[0] = (((int)buff[1]) << 8) | buff[0] + a_offx;
result[1] = (((int)buff[3]) << 8) | buff[2] + a_offy;
result[2] = (((int)buff[5]) << 8) | buff[4] + a_offz;
}
//initializes the gyroscope
void initGyro()
{
/*****************************************
* ITG 3200
* power management set to:
* clock select = internal oscillator
* no reset, no sleep mode
* no standby mode
* sample rate to = 125Hz
* parameter to +/- 2000 degrees/sec
* low pass filter = 5Hz
* no interrupt
******************************************/
writeTo(GYRO, G_PWR_MGM, 0x00);
writeTo(GYRO, G_SMPLRT_DIV, 0x07); // EB, 50, 80, 7F, DE, 23, 20, FF
writeTo(GYRO, G_DLPF_FS, 0x1E); // +/- 2000 dgrs/sec, 1KHz, 1E, 19
writeTo(GYRO, G_INT_CFG, 0x00);
}
void getGyroscopeData(int * result)
{
/**************************************
Gyro ITG-3200 I2C
registers:
temp MSB = 1B, temp LSB = 1C
x axis MSB = 1D, x axis LSB = 1E
y axis MSB = 1F, y axis LSB = 20
z axis MSB = 21, z axis LSB = 22
*************************************/
int regAddress = 0x1B;
int temp, x, y, z;
byte buff[G_TO_READ];
readFrom(GYRO, regAddress, G_TO_READ, buff); //read the gyro data from the ITG3200
result[0] = ((buff[2] << 8) | buff[3]) + g_offx;
result[1] = ((buff[4] << 8) | buff[5]) + g_offy;
result[2] = ((buff[6] << 8) | buff[7]) + g_offz;
result[3] = (buff[0] << 8) | buff[1]; // temperature
}
float xz=0,yx=0,yz=0;
float p_xz=1,p_yx=1,p_yz=1;
float q_xz=0.0025,q_yx=0.0025,q_yz=0.0025;
float k_xz=0,k_yx=0,k_yz=0;
float r_xz=0.25,r_yx=0.25,r_yz=0.25;
//int acc_temp[3];
//float acc[3];
int acc[3];
int gyro[4];
float Axz;
float Ayx;
float Ayz;
float t=0.025;
void setup()
{
Serial.begin(9600);
Wire.begin();
initAcc();
initGyro();
while(flag_calib_failed)
{
if(calib_i<200)
{
getAccelerometerData(acc);
getGyroscopeData(gyro);
sprintf(str, "%d,%d,%d,%d,%d,%d", acc[0],acc[1],acc[2],gyro[0],gyro[1],gyro[2]);
gyro[0]=gyro[0]/ 14.375;
gyro[1]=gyro[1]/ (-14.375);
gyro[2]=gyro[2]/ 14.375;
Axz=(atan2(acc[0],acc[2]))*180/PI;
Ayx=(atan2(acc[0],acc[1]))*180/PI;
Ayz=(atan2(acc[1],acc[2]))*180/PI;
calculate_xz();
calculate_yx();
calculate_yz();
if(calib_i==0)
{
xz_last = xz;
yz_last = yz;
yx_last = yx;
}
xz_int += xz-xz_last;
yz_int += yz-yz_last;
yx_int += yx-yx_last;
xz_last = xz;
yz_last = yz;
yx_last = yx;
xz_bias += xz_last;
yz_bias += yz_last;
yx_bias += yx_last;
}else
{
if(xz_int>500 || yz_int>500 || yx_int>500)
{
flag_calib_failed = 1;
calib_i=0;
xz_last = 0;
yz_last = 0;
yx_last = 0;
xz_bias = 0;
yz_bias = 0;
yx_bias = 0;
}else
{
flag_calib_failed = 0;
}
}
calib_i++;
}
}
//unsigned long timer = 0;
//float o;
void loop()
{
getAccelerometerData(acc);
getGyroscopeData(gyro);
//timer = millis();
sprintf(str, "%d,%d,%d,%d,%d,%d", acc[0],acc[1],acc[2],gyro[0],gyro[1],gyro[2]);
//acc[0]=acc[0];
//acc[2]=acc[2];
//acc[1]=acc[1];
//r=sqrt(acc[0]*acc[0]+acc[1]*acc[1]+acc[2]*acc[2]);
gyro[0]=gyro[0]/ 14.375;
gyro[1]=gyro[1]/ (-14.375);
gyro[2]=gyro[2]/ 14.375;
Axz=(atan2(acc[0],acc[2]))*180/PI;
Ayx=(atan2(acc[0],acc[1]))*180/PI;
/*if((acc[0]!=0)&&(acc[1]!=0))
{
Ayx=(atan2(acc[0],acc[1]))*180/PI;
}
else
{
Ayx=t*gyro[2];
}*/
Ayz=(atan2(acc[1],acc[2]))*180/PI;
//kalman filter
calculate_xz();
calculate_yx();
calculate_yz();
//sprintf(str, "%d,%d,%d", xz_1, xy_1, x_1);
Serial.print(xz);Serial.print("\t");
Serial.print(yx);Serial.print("\t");
Serial.print(yz);Serial.print("\t");
//sprintf(str, "%d,%d,%d,%d,%d,%d", acc[0],acc[1],acc[2],gyro[0],gyro[1],gyro[2]);
//sprintf(str, "%d,%d,%d",gyro[0],gyro[1],gyro[2]);
//Serial.print(Axz);Serial.print("\t");
// Serial.print(Ayx);Serial.print("\t");
// Serial.print(Ayz);Serial.print("\t");
//Serial.print(str);
//o=gyro[2];//w=acc[2];
//Serial.print(o);Serial.print(",");
//Serial.print(w);Serial.print(",");
Serial.print("\n");
//delay(50);
}
void calculate_xz()
{
xz=xz+t*gyro[1];
p_xz=p_xz+q_xz;
k_xz=p_xz/(p_xz+r_xz);
xz=xz+k_xz*(Axz-xz);
p_xz=(1-k_xz)*p_xz;
}
void calculate_yx()
{
yx=yx+t*gyro[2];
p_yx=p_yx+q_yx;
k_yx=p_yx/(p_yx+r_yx);
yx=yx+k_yx*(Ayx-yx);
p_yx=(1-k_yx)*p_yx;
}
void calculate_yz()
{
yz=yz+t*gyro[0];
p_yz=p_yz+q_yz;
k_yz=p_yz/(p_yz+r_yz);
yz=yz+k_yz*(Ayz-yz);
p_yz=(1-k_yz)*p_yz;
}
//---------------- Functions
//Writes val to address register on ACC
void writeTo(int DEVICE, byte address, byte val) {
Wire.beginTransmission(DEVICE); //start transmission to ACC
Wire.write(address); // send register address
Wire.write(val); // send value to write
Wire.endTransmission(); //end transmission
}
//reads num bytes starting from address register on ACC in to buff array
void readFrom(int DEVICE, byte address, int num, byte buff[]) {
Wire.beginTransmission(DEVICE); //start transmission to ACC
Wire.write(address); //sends address to read from
Wire.endTransmission(); //end transmission
Wire.beginTransmission(DEVICE); //start transmission to ACC
Wire.requestFrom(DEVICE, num); // request 6 bytes from ACC
int i = 0;
while(Wire.available()) //ACC may send less than requested (abnormal)
{
buff[i] = Wire.read(); // receive a byte
i++;
}
Wire.endTransmission(); //end transmission
}