Rasa UI is a web application built on top of, and for Rasa. Rasa UI provides a web application to quickly and easily be able to create and manage bots, NLU components (Regex, Examples, Entities, Intents, etc.) and Core components (Stories, Actions, Responses, etc.) through a web interface. It also provides some convenience features for Rasa, like training and loading your models, monitoring usage or viewing logs.
Rasa UI can run on your Rasa instance, or on a separate machine. Technically Rasa is not required, you could just use the UI for managing training data.
Node.js/npm - Serves Rasa UI - Required
Rasa - Developed against Version 1.2+ - Optional
git clone https://github.com/paschmann/rasa-ui.git
cd rasa-ui
npm install
Run npm start from the server folder (rasa-ui)
npm start
Your web application should be available on http://localhost:5001
If you already have a Rasa instance setup and running, you can run Rasa UI from docker hub using paschmann/rasa-ui. You will need to edit the environment variables, specifically the rasa_endpoint.
If you dont have a Rasa instance setup, you can run both Rasa and Rasa UI using the docker-compose file, copy the file to a local directory and run the command below:
docker-compose up
The docker-compose up command will use the docker-compose.yml file to create both the Rasa container and Rasa UI container, and create a networked connection between both.
Because Rasa UI uses a Database to store training data, and other content, in the event the database schema changes, you will need to modify your database when upgrading to newer versions of Rasa UI. Please review the server/db migration folder for upgrade scripts from and to newer versions if you have existing data and want to maintain it. If you are upgrading from Rasa UI prior to v.3.0.0 there is no data migration path as previously postgres was used, and now sqlite is being used.
Since Rasa UI can be used to log events/intent parsing/training etc. we would suggest changing your endpoints for your API calls to "pass through" Rasa UI. All API requests are simply logged, forwarded to Rasa and then returned.
e.g. Instead of POST'ing to your Rasa instance which is normally something like http://localhost:5005/model/parse?q=hello you can POST to Rasa UI (e.g. http://localhost:5001/api/v2/rasa/model/parse?q=hello)
Please read contributing.md for details on our code of conduct, and the process for submitting pull requests to us.
Rasa UI is possible thanks to all the awesome contributers, thank you!
This project is licensed under the MIT License - see the license file for details
Rasa UI是一种基于Web的用户界面,可以用来查看和管理您的Rasa对话机器人。它可以帮助您查看对话历史,监控模型性能,并轻松地编辑意图和实体。 要在您的Rasa机器人中使用Rasa UI,您需要先安装Rasa和Rasa X(Rasa UI的一部分)。这可以通过运行以下命令来完成: pip install rasa pip install rasa-x --extra-index-url ht
首先下载rasaui git clone https://github.com/paschmann/rasaui.git cd rasaui 进行npm install 如果npm没有安装,那么执行 yum install npm 安装后,进行运行,运行中需要docker,如果没有安装docker,那么执行yum install docker 用docker运行rasaui docker run
这是一个关于如何使用Docker构建Rasa智能助手的指南。如果你之前没有使用过Rasa,我们建议你先从Rasa Tutorial开始。 安装Docker 使用Rasa和Docker构建智能助手 设置 与智能助手交互 自定义模型 选择标签 使用Docker训练自定义Rasa模型 运行Rasa服务 使用Docker Compose运行多个服务 添加自定义Actions 新建一个自定义Action 添
目录 Command Line Interface Cheat Sheet# rasa init# rasa train# rasa interactive# rasa shell# rasa run# rasa run actions# rasa visualize# rasa test# rasa data split# rasa data convert nlu# rasa data con
Rasa 是一个开放源代码的机器学习框架,可自动执行基于文本和语音的对话。使用 Rasa,可以进行 NLU,对话管理,可以连接到 Slack,Facebook 等创建聊天机器人和语音助手。 使用环境 pyenv install 3.7.6pyenv local 3.7.6 # Activate Python 3.7.6 for the current project 手动激活虚拟环境 pytho
我已经安装了使用: 当我尝试使用命令时,例如: 我得到了zsh错误: 未找到命令:rasa错误 我在Mac OS Catalina上,使用: Python version Python3 version pip version 我的变量如下所示:
我正在尝试使用'pip install rasa'命令安装rasa NLU。安装结束时出现兼容性错误。 请一些人进入这个问题,并帮助我解决版本不兼容的问题。 错误: C:\用户\桌面\RASA NLU 要求已经满足:h5py在c:\用户\appdata\本地\连续体\anaconda3\lib\site-包(从keras-应用程序 已满足要求:单击 已经满足的要求:危险 已满足要求:Jinja2
Rasa 是一款开源的对话机器人框架,能让开发者使用机器学习技术快速创建工业级的对话机器人。得益于丰富的功能、先进的机器学习能力和可以快速上手的特性,Rasa 框架是目前流行的开源对话机器人框架。