Jupyter Docker Stacks are a set of ready-to-run Docker imagescontaining Jupyter applications and interactive computing tools.
You can try a relatively recent build of the jupyter/base-notebook image on mybinder.orgby simply clicking the preceding link.The image used in binder was last updated on 22 May 2021.Otherwise, three examples below may help you get started if you have Docker installed,know which Docker image you want to useand want to launch a single Jupyter Notebook server in a container.
The User Guide on ReadTheDocs describes additional uses and features in detail.
Example 1: This command pulls the jupyter/scipy-notebook
image tagged 33add21fab64
from Docker Hub if it is not already present on the local host.It then starts a container running a Jupyter Notebook server and exposes the server on host port 8888.The server logs appear in the terminal.Visiting http://<hostname>:8888/?token=<token>
in a browser loads the Jupyter Notebook dashboard page,where hostname
is the name of the computer running docker and token
is the secret token printed in the console.The container remains intact for restart after the notebook server exits.
docker run -p 8888:8888 jupyter/scipy-notebook:33add21fab64
Example 2: This command performs the same operations as Example 1, but it exposes the server on host port 10000 instead of port 8888.Visiting http://<hostname>:10000/?token=<token>
in a browser loads Jupyter Notebook server,where hostname
is the name of the computer running docker and token
is the secret token printed in the console.
docker run -p 10000:8888 jupyter/scipy-notebook:33add21fab64
Example 3: This command pulls the jupyter/datascience-notebook
image tagged 33add21fab64
from Docker Hub if it is not already present on the local host.It then starts an ephemeral container running a Jupyter Notebook server and exposes the server on host port 10000.The command mounts the current working directory on the host as /home/jovyan/work
in the container.The server logs appear in the terminal.Visiting http://<hostname>:10000/?token=<token>
in a browser loads JupyterLab,where hostname
is the name of the computer running docker and token
is the secret token printed in the console.Docker destroys the container after notebook server exit, but any files written to ~/work
in the container remain intact on the host.
docker run --rm -p 10000:8888 -e JUPYTER_ENABLE_LAB=yes -v "${PWD}":/home/jovyan/work jupyter/datascience-notebook:33add21fab64
Please see the Contributor Guide on ReadTheDocs forinformation about how to contribute package updates, recipes, features, tests, and communitymaintained stacks.
We value all positive contributions to the Docker stacks project,from bug reportsto pull requeststo translationsto help answering questions.We'd also like to invite members of the community to help with two maintainer activities:
Anyone in the community can jump in and help with these activities at any timeWe will happily grant additional permissions (e.g., ability to merge PRs) to anyone who shows an on-going interest in working on the project.
Following Jupyter Notebook notice, we encourage users to transition to JupyterLab.This can be done by passing the environment variable JUPYTER_ENABLE_LAB=yes
at container startup,more information is available in the documentation.
At some point, JupyterLab will become the default for all of the Jupyter Docker stack images, however a new environment variable will be introduced to switch back to Jupyter Notebook if needed.
After the change of default, and according to the Jupyter Notebook project status and its compatibility with JupyterLab,these Docker images may remove the classic Jupyter Notebook interface altogether in favor of another classic-like UI built atop JupyterLab.
This change is tracked in the issue #1217, please check its content for more information.
All published containers support amd64 (x86_64) and aarch64, except for datascience and tensorflow, which only support amd64 for now.
概述:一个stack是一个分享依赖、相互协作的相关服务的集合。一个stack就足以定义和协调整个APP的功能。(虽然非常复杂的应用需要多个stack)。在服务中,我们已经介绍过stack(使用docker stack deploy去部署Compose文件),但那只是运行在单一主机上的单一服务stack,而现在我们要学会使服务相互依赖,并运行在多台机器上。 (一)加入新服务 & 重新部署
Docker-Compose 多容器部署工具 概述 Docker-Compose 项目是 Docker 官方的开源项目,是用于定义和运行多容器 Docker 应用程序的工具。负责实现对 Docker 容器集群的快速编排。 通过 Compose,可以使用 YML 文件来配置应用程序需要的所有服务。然后,使用一个命令,就可以从 YML 文件配置中创建并启动所有服务。 Docker-Compose 将所
当想使用docker安装Jupyter Notebook时,有一个很好的项目是docker-stacks(https://github.com/jupyter/docker-stacks/tree/master/scipy-notebook), 但遗憾的是在安装scipy-notebook等项目时,老是遇到conda超时的问题。 要解决这个问题,可以在Dockfile里,conda install
Docker基础命令 docker exec –it 镜像 /bin/bash 进入容器 docker logs 容器id 查看容器运行日志 docker version ## 显示 Docker 版本和信息 docker info ##输出docker应用的信息 docker inspect # 检查 task 或 container docker swarm命令 docker s
docker images docker container 单个应用程序 --非集群 Docker machine docker machine是一个便于在多平台上部署Docker的一个工具;多平台比如: Amazon Web Services Microsoft Azure Digital Ocean Exoscale Google Compute Engine Generic Microso
[root@iZbp13pwlxqwiu1xxb6szsZ ~]# docker --help Usage: docker [OPTIONS] COMMAND A self-sufficient runtime for containers Options: --config string Location of client config files (default
声明:作者才疏学浅,如果文章有误,请评论指出。如果有疑问,欢迎关注评论交流。若转载,请注明出处。 当我们久别重逢 docker 时,经常会忘记一些命令。新学者也常常如此。于是,我们习惯性地去找度娘解决问题。一次忘记命令,就找一次度娘,下次忘记了,还是去找度娘。但是,找度娘并不是长久的解决方法呀,每次忘记命令都找度娘也实在麻烦!嫌麻烦,你可以尝试这样做。 一、我们都知道:好记
一、解决的问题 二、与虚拟机的比较 三、优势 四、使用场景 五、镜像与容器 参考资料 一、解决的问题 由于不同的机器有不同的操作系统,以及不同的库和组件,在将一个应用部署到多台机器上需要进行大量的环境配置操作。 Docker 主要解决环境配置问题,它是一种虚拟化技术,对进程进行隔离,被隔离的进程独立于宿主操作系统和其它隔离的进程。使用 Docker 可以不修改应用程序代码,不需要开发人员学习特定环
我检查了垃圾箱,里面没有ping
第一章 Docker介绍1 1.1 docker简介 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的\[Linux\]机器上,也可以实现\[虚拟化\]。容器是完全使用\[沙箱\]机制,相互之间不会有任何接口。 1.2 Docker是什么? Docker是一个程序运行、测试、交付的开放平台,Docker被设计为能够使你快速地交
推荐使用 Swoole 官方 Docker:https://github.com/swoole/docker-swoole
Docker Commands Commands Notes docker ps -a Show all containers on the system docker ps Show only currently running containers docker run <NAME> Creates & runs a docker container via an image docker i
环境准备 1. 下载镜像及配置文件 链接: https://pan.baidu.com/s/1hw0h1KUlhSirFBId6kh8mw 提取码: 1wng $ ls backend-0.0.8.tar.gz env.list grpc-go-greeting-0.1.tar.gz nginx-lb.conf nginx-perf.conf nginxplus-23-r1.tar.