当前位置: 首页 > 软件库 > 其他开源 > 开源图书 >

fastai

深度学习实践库
授权协议 Apache-2.0
开发语言 Python
所属分类 其他开源、 开源图书
软件类型 开源软件
地区 不详
投 递 者 司徒墨竹
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

fastai 库使用现代最佳实践简化了快速准确的神经网络训练。它基于对fast.ai深度学习最佳实践的研究,包括对visiontexttabularcollab(协作过滤)模型的“开箱即用”支持。

示例,以下是如何使用resnet18训练MNIST模型(来自vision example):

path = untar_data(URLs.MNIST_SAMPLE)
data = ImageDataBunch.from_folder(path)
learn = cnn_learner(data, models.resnet18, metrics=accuracy)
learn.fit(1)

  • Python之fastai:fastai库的简介、安装、使用方法之详细攻略 目录 fastai库的简介 fastai库的安装 fastai库的使用方法 1、计算机视觉分类

  • 本文为译文,主要介绍安装问题。Fastai github原文地址:https://github.com/fastai/fastai/blob/master/README.md#is-my-system-supported 注意事项:fastai v1目前只支持Linux,并且需要PyTorch v1和Python 3.6或更高版本。Windows还处于试验阶段:应该可以很好地工作,但还没有全面的测

  •      Tensorflow 已经有了 Keras,PyTorch 当然也得出一个对标的高阶封装库,于是 Fastai 应运而生。       由于目标市场比较低端,Fastai 在某种程度上舍弃了定制化,更追求开箱即用。个人感觉会成为神经网络界的 sklearn 吧。 同时,Fastai还是一个课程平台,一个讨论社区 在深度学习领域,最受学生欢迎的MOOC课程平台有三个:Fast.ai、dee

 相关资料
  • 加速训练的方法 内部方法 网络结构 比如 CNN 与 RNN,前者更适合并行架构 优化算法的改进:动量、自适应学习率 ./专题-优化算法 减少参数规模 比如使用 GRU 代替 LSTM 参数初始化 Batch Normalization 外部方法 深度学习训练加速方法 - CSDN博客 GPU 加速 数据并行 模型并行 混合数据并行与模型并行 CPU 集群 GPU 集群

  • 主要内容 课程列表 专项课程学习 辅助课程 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 卷积神经网络视觉识别 Stanford 暂无 链接 神经网络 Tweet 暂无 链接 深度学习用于自然语言处理 Stanford 暂无 链接 自然语言处理 Speech and Language Processing 链接 专项课程学习 下述的课程都是公认的最好的在线学习资料,侧重点不同,但推

  • Google Cloud Platform 推出了一个 Learn TensorFlow and deep learning, without a Ph.D. 的教程,介绍了如何基于 Tensorflow 实现 CNN 和 RNN,链接在 这里。 Youtube Slide1 Slide2 Sample Code

  • 现在开始学深度学习。在这部分讲义中,我们要简单介绍神经网络,讨论一下向量化以及利用反向传播(backpropagation)来训练神经网络。 1 神经网络(Neural Networks) 我们将慢慢的从一个小问题开始一步一步的构建一个神经网络。回忆一下本课程最开始的时就见到的那个房价预测问题:给定房屋的面积,我们要预测其价格。 在之前的章节中,我们学到的方法是在数据图像中拟合一条直线。现在咱们不

  • 深度学习的总体来讲分三层,输入层,隐藏层和输出层。如下图: 但是中间的隐藏层可以是多层,所以叫深度神经网络,中间的隐藏层可以有多种形式,就构成了各种不同的神经网络模型。这部分主要介绍各种常见的神经网络层。在熟悉这些常见的层后,一个神经网络其实就是各种不同层的组合。后边介绍主要基于keras的文档进行组织介绍。

  • Python 是一种通用的高级编程语言,广泛用于数据科学和生成深度学习算法。这个简短的教程介绍了 Python 及其库,如 Numpy,Scipy,Pandas,Matplotlib,像 Theano,TensorFlow,Keras 这样的框架。

  • 你拿起这本书的时候,可能已经知道深度学习近年来在人工智能领域所取得的非凡进展。在图像识别和语音转录的任务上,五年前的模型还几乎无法使用,如今的模型的表现已经超越了人类。

  • 主要内容:机器学习,深度学习,机器学习与深度学习的区别,机器学习和深度学习的应用人工智能是近几年来最流行的趋势之一。机器学习和深度学习构成了人工智能。下面显示的维恩图解释了机器学习和深度学习的关系 - 机器学习 机器学习是让计算机按照设计和编程的算法行事的科学艺术。许多研究人员认为机器学习是实现人类AI的最佳方式。机器学习包括以下类型的模式 - 监督学习模式 无监督学习模式 深度学习 深度学习是机器学习的一个子领域,其中有关算法的灵感来自大脑的结构和功能,称为人工神经网络。