当前位置: 首页 > 软件库 > 程序开发 > 推荐引擎 >

LibRec

推荐系统 Java 库
授权协议 GPL
开发语言 Java
所属分类 程序开发、 推荐引擎
软件类型 开源软件
地区 不详
投 递 者 楚俊杰
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

LibRec 是一个用于实现推荐 recommender 系统的Java库包,实现推荐系统的两个经典问题: rating prediction (评分排行预测) 和 item ranking (项目排行),其内置了经典的机器学习算法。

特点:

1.跨平台: 作为一个Java软件, LibRec 能部署到任何平台上,包括MS Windows, Linux 和 Mac OS.
2.快速执行: LibRec运行比其他库包更快。
3.易于配置: LibRec配置推荐只需要一个配置文件: librec.conf
4.易于扩展: LibRec提供一系列推荐接口,易于拓展到新的推荐。

  • introduce to Librec Overview LibRec 是一个基于java 1.7以GPL-3.0协议发布的开源推荐系统. LibRec内包含大量推荐算法并可以通过这些算法快速解决rating和ranking问题. 目前LibRec已被RecSys wiki收录. 与1.4相比, 2.0版本重新程序的整体结构, 接口更加合理, 可扩展性更强. 对于已经实现的程序, 可以使用命令行和

 相关资料
  • 背景与挖掘目标 随着互联网的快速发展,用户很难快速从海量信息中寻找到自己感兴趣的信息。因此诞生了:搜索引擎+推荐系统 本章节-推荐系统: 帮助用户发现其感兴趣和可能感兴趣的信息。 让网站价值信息脱颖而出,得到广大用户的认可。 提高用户对网站的忠诚度和关注度,建立稳固用户群体。 分析方法与过程 本案例的目标是对用户进行推荐,即以一定的方式将用户与物品(本次指网页)之间建立联系。 由于用户访问网站的数

  • 本章将介绍协同过滤,基本的距离算法,包括曼哈顿距离、欧几里得距离、闵科夫斯基距离、皮尔森相关系数。使用Python实现一个基本的推荐算法。 内容: 推荐系统工作原理 社会化协同过滤工作原理 如何找到相似物品 曼哈顿距离 欧几里得距离 闵可夫斯基距离 皮尔逊相关系数 余弦相似度 使用Python实现K最邻近算法 图书漂流站(BookCrossing)数据集

  • Ceph 依赖 按常规来说,我们建议在较新的 Linux 发行版上部署 Ceph ;同样,要选择长期支持的版本。 Linux 内核 Ceph 内核态客户端 当前我们推荐: 4.1.4 or later 3.16.3 or later (rbd deadlock regression in 3.16.[0-2]) NOT v3.15.* (rbd deadlock regression) 3.14.

  • 我将本章学到的内容都汇集成了一个Python类,虽然代码有些长,我还是贴在了这里: import codecs from math import sqrt users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, "Norah Jones": 4.5, "Phoenix": 5.0

  • 背景与挖掘目标 随着互联网的快速发展,用户很难快速从海量信息中寻找到自己感兴趣的信息。因此诞生了:搜索引擎+推荐系统 本章节-推荐系统: 帮助用户发现其感兴趣和可能感兴趣的信息。 让网站价值信息脱颖而出,得到广大用户的认可。 提高用户对网站的忠诚度和关注度,建立稳固用户群体。 分析方法与过程 本案例的目标是对用户进行推荐,即以一定的方式将用户与物品(本次指网页)之间建立联系。 由于用户访问网站的数

  • 准备硬盘 Ceph 注重数据安全,就是说, Ceph 客户端收到数据已写入存储器的通知时,数据确实已写入硬盘。使用较老的内核(版本小于 2.6.33 )时,如果日志在原始硬盘上,就要禁用写缓存;较新的内核没问题。 用 hdparm 禁用硬盘的写缓冲功能。 sudo hdparm -W 0 /dev/hda 0 在生产环境,我们建议操作系统和 Ceph OSD 守护进程数据分别放到不同的硬盘。如果必

  • 1:联系用户兴趣和物品的方式 2:标签系统的典型代表 3:用户如何打标签 4:基于标签的推荐系统 5:算法的改进 6:标签推荐 一:联系用户兴趣和物品的方式 推荐系统的目的是联系用户的兴趣和物品,这种联系方式需要依赖不同的媒介。目前流行的推荐系统基本上是通过三种方式联系用户兴趣和物品。 1:利用用户喜欢过的物品,给用户推荐与他喜欢过的物品相似的物品,即基于item的系统过滤推荐算法 2:利用用户和

  • 一面感觉答得一般,没想到还给了二面 8.7号二面 首先面试官先介绍自己部门,然后自我介绍 面试官问如果满分十分,给自己C++水平打几分,扣的分在哪里 问C++虚函数相关 问GPU和CPU的区别,为什么GPU更快,GPU的线程和CPU的线程有什么不同 代码: 自己实现排序算法,不能修改原数组 我直接拷贝了一个数组,然后在新数组上进行原地快排。然后问快排的时间和空间复杂度。问怎么优化才能让快排的最差空