定义一个模型
本项目采用的是参数化配置,不需要改动任何代码,可以训练几乎任何字符型图片验证码,下面从两个配置文件说起:config.yaml # 系统配置
# - requirement.txt - GPU: tensorflow-gpu, CPU: tensorflow
# - If you use the GPU version, you need to install some additional applications.
# TrainRegex and TestRegex: Default matching apple_20181010121212.jpg file.
# - The Default is .*?(?=_.*\.)
# TrainsPath and TestPath: The local absolute path of your training and testing set.
# TestSetNum: This is an optional parameter that is used when you want to extract some of the test set
# - from the training set when you are not preparing the test set separately.
System:
DeviceUsage: 0.7
TrainsPath: 'E:\Task\Trains\YourModelName\'
TrainRegex: '.*?(?=_)'
TestPath: 'E:\Task\TestGroup\YourModelName\'
TestRegex: '.*?(?=_)'
TestSetNum: 1000
# CNNNetwork: [CNN5, DenseNet]
# RecurrentNetwork: [BLSTM, LSTM]
# - The recommended configuration is CNN5+BLSTM / DenseNet+BLSTM
# HiddenNum: [64, 128, 256]
# - This parameter indicates the number of nodes used to remember and store past states.
NeuralNet:
CNNNetwork: CNN5
RecurrentNetwork: BLSTM
HiddenNum: 64
KeepProb: 0.98
# SavedSteps: A Session.run() execution is called a Steps,
# - Used to save training progress, Default value is 100.
# ValidationSteps: Used to calculate accuracy, Default value is 100.
# TestNum: The number of samples for each test batch.
# - A test for every saved steps.
# EndAcc: Finish the training when the accuracy reaches [EndAcc*100]%.
# EndEpochs: Finish the training when the epoch is greater than the defined epoch.
Trains:
SavedSteps: 100
ValidationSteps: 500
EndAcc: 0.975
EndEpochs: 1
BatchSize: 64
TestBatchSize: 400
LearningRate: 0.01
DecayRate: 0.98
DecaySteps: 10000
上面看起来好多好多参数,其实大部分可以不用改动,你需要修改的仅仅是训练集路径就可以了,注意:如果训练集的命名格式和我提供的新手训练集不一样,请根据实际情况修改TrainRegex和TestRegex的正则表达式。,TrainsPath和TestPath路径支持list参数,允许多个路径,这种操作适用于需要将多种样本训练为一个模型,或者希望训练一套通用模型的人。为了加快训练速度,提高训练集读取效率,特别提供了make_dataset.py来支持将训练集打包为tfrecords格式输入,经过make_dataset.py打包之后的训练集将输出到本项目的dataset路径下,只需修改TrainsPath键的配置如下即可
TrainsPath: './dataset/xxx.tfrecords'
TestPath是允许为空的,如果TestPath为空将会使用TestSetNum参数自动划分出对应个数的测试集。如果使用自动划分机制,那么TestSetNum测试集总数参数必须大于等于TestBatchSize测试集每次读取的批次大小。
神经网络这块可以讲一讲,默认提供的组合是CNN5(CNN5层模型)+BLSTM(Bidirectional LSTM)+CTC,亲测收敛最快,但是训练集过小,实际图片变化很大特征很多的情况下容易发生过拟合。DenseNet可以碰运气在样本量很小的情况下很好的训练出高精度的模型,为什么是碰运气呢,因为收敛快不快随机的初始权重很重要,运气好前500步可能对测试集就有40-60%准确率,运气不好2000步之后还是0,收敛快慢是有一定的运气成分的。
NeuralNet:
CNNNetwork: CNN5
RecurrentNetwork: BLSTM
HiddenNum: 64
KeepProb: 0.99
隐藏层HiddenNum笔者尝试过8~64,都能控制在很小的模型大小之内,如果想使用DenseNet代替CNN5直接修改如上配置中的CNNNetwork参数替换为:
NeuralNet:
CNNNetwork: DenseNet
......
model.yaml # 模型配置
# ModelName: Corresponding to the model file in the model directory,
# - such as YourModelName.pb, fill in YourModelName here.
# CharSet: Provides a default optional built-in solution:
# - [ALPHANUMERIC, ALPHANUMERIC_LOWER, ALPHANUMERIC_UPPER,
# -- NUMERIC, ALPHABET_LOWER, ALPHABET_UPPER, ALPHABET]
# - Or you can use your own customized character set like: ['a', '1', '2'].
# CharExclude: CharExclude should be a list, like: ['a', '1', '2']
# - which is convenient for users to freely combine character sets.
# - If you don't want to manually define the character set manually,
# - you can choose a built-in character set
# - and set the characters to be excluded by CharExclude parameter.
Model:
Sites: []
ModelName: YourModelName-CNN5-H64-150x50
ModelType: 150x50
CharSet: ALPHANUMERIC_LOWER
CharExclude: []
CharReplace: {}
ImageWidth: 150
ImageHeight: 50
# Binaryzation: [-1: Off, >0 and < 255: On].
# Smoothing: [-1: Off, >0: On].
# Blur: [-1: Off, >0: On].
# Resize: [WIDTH, HEIGHT]
# - If the image size is too small, the training effect will be poor and you need to zoom in.
# - ctc_loss error "No valid path found." happened
Pretreatment:
Binaryzation: -1
Smoothing: -1
Blur: -1
上述的配置只要关注
ModelName、CharSet、ImageWidth、ImageHeight
首先给模型取一个好名字是成功的第一步,字符集CharSet其实大多数情况下不需要修改,一般的图形验证码离不开数字和英文,而且一般来说是大小写不敏感的,不区分大小写,因为打码平台收集的训练集质量参差不齐,有些大写有些小写,不如全部统一为小写,默认ALPHANUMERIC_LOWER则会自动将大写的转为小写,字符集可定制化很灵活,除了配置备注上提供的几种类型,还可以训练中文,自定义字符集用list表示,示例如下:
CharSet: ['常', '世', '宁', '慢', '南', '制', '根', '难']
可以自己根据收集训练集的实际字符集使用率来定义,也可以无脑网上找3500常用字来训练,注意:中文字符集一般比数字英文大很多,刚开始收敛比较慢,需要更久的训练时间,也需要更多的样本量,请量力而行
形如上图的图片能轻松训练到95%以上的识别率。
ImageWidth、ImageHeight只要和当前图片尺寸匹配即可,其实这里的配置主要是为了方便后面的部署智能策略。
其他的如Pretreatment之下的参数是用来做图片预处理的,因为笔者致力于做一套通用模型,模型只使用了灰度做预处理。其中可选的二值化、均值滤波、高斯模糊均未开启,即使不进行那些预处理该框架已经能够达到很理想的识别效果了,笔者自用的大多数模型都是98%以上的识别率。
按照上面的介绍,配置只要修改极少数的参数对应的值,就可以开启正式的训练之旅了,具体操作如下:
可以直接使用PyCharm的Run,执行trains.py,也可以在激活Virtualenv下使用终端亦或在安装依赖的全局环境下执行
python3 trains.py
剩下的就是等了,看过程,等结果。
正常开始训练的模样应该是这样的:
该项目还支持带颜色的训练和识别,如下图:
见代码,注意在tensorflow2.0环境下 import tensorflow as tf import numpy as np import cv2 def load_pb(pb_path, img_array, input_tensor_name, out_tensor_name): """ 通过加载pb格式的模型来预测 input_tensor_name li
刚从ML开始,创建了我的第一个CNN来检测人脸图像的方位。我得到的训练和测试精度高达约96-99%超过2组不同的1000张图片(128x128RGB)。然而,当我自行从测试集中预测一个图像时,模型很少预测正确。我认为在测试和预测期间,我将数据加载到模型中的方式肯定有区别。下面是我如何将数据加载到模型中进行训练和测试: 下面是我如何加载图像来进行预测: ImageDataGenerator处理图像的
我试图设计和训练一个卷积神经网络来识别图像中的圆形细胞。我在完整图像的“切口”上训练它,这些图像中间要么有一个圆(正训练样本),要么没有(负训练样本)。 中间有一个圆圈的图像示例(热图颜色不稳定,图像均为灰度):http://imgur.com/a/6q8LZ 我希望网络输出是一个二进制位图,而不仅仅是对两种类型的输入图像(圆形或不在中间)进行分类,如果输入图像中没有圆形,则该位图是一个统一的值(
错误为: 谁能帮帮我吗?
有了能做出惊人预测的模型之后,要做什么呢?当然是部署生产了。这只要用模型运行一批数据就成,可能需要写一个脚本让模型每夜都跑着。但是,现实通常会更复杂。系统基础组件都可能需要这个模型用于实时数据,这种情况需要将模型包装成网络服务:这样的话,任何组件都可以通过 REST API 询问模型。随着时间的推移,你需要用新数据重新训练模型,更新生产版本。必须处理好模型版本,平稳地过渡到新版本,碰到问题的话需要
本文向大家介绍tensorflow 固定部分参数训练,只训练部分参数的实例,包括了tensorflow 固定部分参数训练,只训练部分参数的实例的使用技巧和注意事项,需要的朋友参考一下 在使用tensorflow来训练一个模型的时候,有时候需要依靠验证集来判断模型是否已经过拟合,是否需要停止训练。 1.首先想到的是用tf.placeholder()载入不同的数据来进行计算,比如 这种方式很简单,也很
本文向大家介绍基于pytorch 预训练的词向量用法详解,包括了基于pytorch 预训练的词向量用法详解的使用技巧和注意事项,需要的朋友参考一下 如何在pytorch中使用word2vec训练好的词向量 这个方法是在pytorch中将词向量和词对应起来的一个方法. 一般情况下,如果我们直接使用下面的这种: 这种情况下, 因为没有指定训练好的词向量, 所以embedding会帮咱们生成一个随机的词