当前位置: 首页 > 软件库 > 数据库相关 > >

fastapi_contrib

Opinionated set of utilities on top of FastAPI
授权协议 MIT License
开发语言 Python
所属分类 数据库相关
软件类型 开源软件
地区 不详
投 递 者 梁丘钊
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

FastAPI Contrib

Updates

Opinionated set of utilities on top of FastAPI

Features

  • Auth Backend & Middleware (User or None in every request object)
  • Permissions: reusable class permissions, specify multiple as FastAPI Dependency
  • ModelSerializers: serialize (pydantic) incoming request, connect data with DB model and save
  • UJSONResponse: correctly show slashes in fields with URLs
  • Limit-Offset Pagination: use it as FastAPI Dependency (works only with ModelSerializers for now)
  • MongoDB integration: Use models as if it was Django (based on pydantic models)
  • MongoDB indices verification on startup of the app
  • Custom Exceptions and Custom Exception Handlers
  • Opentracing middleware & setup utility with Jaeger tracer + root span available in every Request's state
  • StateRequestIDMiddleware: receives configurable header and saves it in request state

Roadmap

See GitHub Project Roadmap.

Installation

To install just Contrib (without mongodb, pytz, ujson):

$ pip install fastapi_contrib

To install contrib with mongodb support:

$ pip install fastapi_contrib[mongo]

To install contrib with ujson support:

$ pip install fastapi_contrib[ujson]

To install contrib with pytz support:

$ pip install fastapi_contrib[pytz]

To install contrib with opentracing & Jaeger tracer:

$ pip install fastapi_contrib[jaegertracing]

To install everything:

$ pip install fastapi_contrib[all]

Usage

To use Limit-Offset pagination:

from fastapi import FastAPI
from fastapi_contrib.pagination import Pagination
from fastapi_contrib.serializers.common import ModelSerializer
from yourapp.models import SomeModel

app = FastAPI()

class SomeSerializer(ModelSerializer):
    class Meta:
        model = SomeModel

@app.get("/")
async def list(pagination: Pagination = Depends()):
    filter_kwargs = {}
    return await pagination.paginate(
        serializer_class=SomeSerializer, **filter_kwargs
    )

Subclass this pagination to define custom default & maximum values for offset & limit:

class CustomPagination(Pagination):
    default_offset = 90
    default_limit = 1
    max_offset = 100
    max_limit = 2000

To use State Request ID Middleware:

from fastapi import FastAPI
from fastapi_contrib.common.middlewares import StateRequestIDMiddleware

app = FastAPI()

@app.on_event('startup')
async def startup():
    app.add_middleware(StateRequestIDMiddleware)

To use Authentication Middleware:

from fastapi import FastAPI
from fastapi_contrib.auth.backends import AuthBackend
from fastapi_contrib.auth.middlewares import AuthenticationMiddleware

app = FastAPI()

@app.on_event('startup')
async def startup():
    app.add_middleware(AuthenticationMiddleware, backend=AuthBackend())

Define & use custom permissions based on FastAPI Dependency framework:

from fastapi import FastAPI
from fastapi_contrib.permissions import BasePermission, PermissionsDependency

class TeapotUserAgentPermission(BasePermission):

    def has_required_permissions(self, request: Request) -> bool:
        return request.headers.get('User-Agent') == "Teapot v1.0"

app = FastAPI()

@app.get(
    "/teapot/",
    dependencies=[Depends(
        PermissionsDependency([TeapotUserAgentPermission]))]
)
async def teapot() -> dict:
    return {"teapot": True}

Setup uniform exception-handling:

from fastapi import FastAPI
from fastapi_contrib.exception_handlers import setup_exception_handlers

app = FastAPI()

@app.on_event('startup')
async def startup():
    setup_exception_handlers(app)

If you want to correctly handle scenario when request is an empty body (IMPORTANT: non-multipart):

from fastapi import FastAPI
from fastapi_contrib.routes import ValidationErrorLoggingRoute

app = FastAPI()
app.router.route_class = ValidationErrorLoggingRoute

Or if you use multiple routes for handling different namespaces (IMPORTANT: non-multipart):

from fastapi import APIRouter, FastAPI
from fastapi_contrib.routes import ValidationErrorLoggingRoute

app = FastAPI()

my_router = APIRouter(route_class=ValidationErrorLoggingRoute)

To correctly show slashes in fields with URLs + ascii locking:

from fastapi import FastAPI
from fastapi_contrib.common.responses import UJSONResponse

app = FastAPI()

@app.get("/", response_class=UJSONResponse)
async def root():
    return {"a": "b"}

Or specify it as default response class for the whole app (FastAPI >= 0.39.0):

from fastapi import FastAPI
from fastapi_contrib.common.responses import UJSONResponse

app = FastAPI(default_response_class=UJSONResponse)

To setup Jaeger tracer and enable Middleware that captures every request in opentracing span:

from fastapi import FastAPI
from fastapi_contrib.tracing.middlewares import OpentracingMiddleware
from fastapi_contrib.tracing.utils import setup_opentracing

app = FastAPI()

@app.on_event('startup')
async def startup():
    setup_opentracing(app)
    app.add_middleware(OpentracingMiddleware)

To setup mongodb connection at startup and never worry about it again:

from fastapi import FastAPI
from fastapi_contrib.db.utils import setup_mongodb

app = FastAPI()

@app.on_event('startup')
async def startup():
    setup_mongodb(app)

Use models to map data to MongoDB:

from fastapi_contrib.db.models import MongoDBModel

class MyModel(MongoDBModel):
    additional_field1: str
    optional_field2: int = 42

    class Meta:
        collection = "mymodel_collection"


mymodel = MyModel(additional_field1="value")
mymodel.save()

assert mymodel.additional_field1 == "value"
assert mymodel.optional_field2 == 42
assert isinstance(mymodel.id, int)

Or use TimeStamped model with creation datetime:

from fastapi_contrib.db.models import MongoDBTimeStampedModel

class MyTimeStampedModel(MongoDBTimeStampedModel):

    class Meta:
        collection = "timestamped_collection"


mymodel = MyTimeStampedModel()
mymodel.save()

assert isinstance(mymodel.id, int)
assert isinstance(mymodel.created, datetime)

Use serializers and their response models to correctly show Schemas and convert from JSON/dict to models and back:

from fastapi import FastAPI
from fastapi_contrib.db.models import MongoDBModel
from fastapi_contrib.serializers import openapi
from fastapi_contrib.serializers.common import Serializer

from yourapp.models import SomeModel

app = FastAPI()


class SomeModel(MongoDBModel):
    field1: str


@openapi.patch
class SomeSerializer(Serializer):
    read_only1: str = "const"
    write_only2: int
    not_visible: str = "42"

    class Meta:
        model = SomeModel
        exclude = {"not_visible"}
        write_only_fields = {"write_only2"}
        read_only_fields = {"read_only1"}


@app.get("/", response_model=SomeSerializer.response_model)
async def root(serializer: SomeSerializer):
    model_instance = await serializer.save()
    return model_instance.dict()

POST-ing to this route following JSON:

{"read_only1": "a", "write_only2": 123, "field1": "b"}

Should return following response:

{"id": 1, "field1": "b", "read_only1": "const"}

Auto-creation of MongoDB indexes

Suppose we have this directory structure:

-- project_root/
     -- apps/
          -- app1/
               -- models.py (with MongoDBModel inside with indices declared)
          -- app2/
               -- models.py (with MongoDBModel inside with indices declared)

Based on this, your name of the folder with all the apps would be "apps". This is the default name for fastapi_contrib package to pick up your structure automatically. You can change that by setting ENV variable CONTRIB_APPS_FOLDER_NAME (by the way, all the setting of this package are overridable via ENV vars with CONTRIB_ prefix before them).

You also need to tell fastapi_contrib which apps to look into for your models. This is controlled by CONTRIB_APPS ENV variable, which is list of str names of the apps with models. In the example above, this would be CONTRIB_APPS=["app1","app2"].

Just use create_indexes function after setting up mongodb:

from fastapi import FastAPI
from fastapi_contrib.db.utils import setup_mongodb, create_indexes

app = FastAPI()

@app.on_event("startup")
async def startup():
    setup_mongodb(app)
    await create_indexes()

This will scan all the specified CONTRIB_APPS in the CONTRIB_APPS_FOLDER_NAME for models, that are subclassed from either MongoDBModel or MongoDBTimeStampedModel and create indices for any of them that has Meta class with indexes attribute:

models.py:

import pymongo
from fastapi_contrib.db.models import MongoDBTimeStampedModel


class MyModel(MongoDBTimeStampedModel):

    class Meta:
        collection = "mymodel"
        indexes = [
            pymongo.IndexModel(...),
            pymongo.IndexModel(...),
        ]

This would not create duplicate indices because it relies on pymongo and motor to do all the job.

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

  • opencv calib3d——主要包含相机标定和立体视觉等功能,例如物体位姿估计、三维重建、摄像头标定等。 core——核心功能模块,主要包含opencv库的基础结构和基本操作,例如opencv基本数据结构、绘图函数、数组操作相关函数、动态数据结构等。 dnn——深度学习模块,主要包括构建神经网络、加载序列化网络模型等。 features2d——功能主要为处理图像特征点,例如特征检测、描述与匹配

  • 由于在学习图像识别中的特征点检测中,需要用到Surf和Sift算法,但是这两个算法在OpenCV 3.1.0的Release版本中并不存在,因为他们是存放在opencv_contrib目录下面的未稳定功能模块,所以如果我们想要使用这个目录的功能,就需要自己重新进行OpenCV的编译。 1.下载OpenCV安装包:https://sourceforge.net/projects/opencvlibr

  • 创建数据库连接 from fastapi import FastAPI from tortoise.contrib.fastapi import register_tortoise from app.config import config class GetDB(object): def _get_orm_base_conf(self, apps: dict) -> dict:

  • 概述 fastapi是一个很优秀的框架,但是缺少一个合适的orm,官方代码里面使用的是sqlalchemy,异步也是使用的这个。但是我这边看到有tortoise-orm这个异步orm框架,不知道效率如何,这里先学习,之后做一个性能测试比较一下。 整个框架非常接近django,如果我没写的地方,要么是和django差不多,要么是没这功能。 fastapi引入 在main.py文件里面引入如下代码:

  • 使用FastAPI对YOLO模型进行http封装 前言 在实际生产中,深度学习模型往往需要部署在服务器中,前端通过接口来调用模型推理过程,并获得返回值。 FastAPI是一种快速、高性能的Web框架。本文中使用FastAPI对目标检测模型进行了http封装,前端只需要将图片转为base64传入,生成json格式的检测结果返回。 一、模型推理过程 检测部分使用的opencv dnn调用darknet

  • Tortoise-orm的使用 该数据模型参照Django的数据模型,因此使用上与Django的数据模型高度相似。 !!! 注意,tortoise-orm是异步框架。 官方文档: https://tortoise-orm.readthedocs.io/en/latest/index.html 安装tortoise pip install tortoise 安装数据模型迁移工具 pip ins

  • 更改sqlite为mysql from tortoise import Tortoise import asyncio async def init(): user = 'root' password = '123456' db_name = 'test' await Tortoise.init( #指定mysql信息 db_url=

  • 1、在服务器下载python并安装,注意勾选"Add Python to environment variables"选项自动配置环境 2、在pycharm下方控制台终端(Terminal)中输入 pip3 freeze > requirements.txt 导出依赖文件requirements.txt,位于根目录下 2、将所有py文件和requirements.txt文件复制粘贴到服务器上(最好

相关阅读

相关文章

相关问答

相关文档