当前位置: 首页 > 编程笔记 >

KMP算法精解及其Python版的代码示例

姬国安
2023-03-14
本文向大家介绍KMP算法精解及其Python版的代码示例,包括了KMP算法精解及其Python版的代码示例的使用技巧和注意事项,需要的朋友参考一下

KMP算法是经典的字符串匹配算法,解决从字符串S,查找模式字符串M的问题。算法名称来源于发明者Knuth,Morris,Pratt。
假定从字符串S中查找M,S的长度ls,M的长度lm,且(ls > lm)。

朴素的字符串查找方法
从字符串S的第一个字符开始与M进行比较,如果匹配失败。从下一字符开始,重新比较。指导第 (ls - lm) 个字符。
这种方法容易想到并且容易理解,效率不高。
问题在于每次匹配失败后,移动的步伐固定为 1,其实步子可以迈得再大一些。

KMP的字符串查找方法
假定在模式串的连续字串M[0, i] 且 i < lm,已经成功匹配字符串S。但是不巧第 i+1 个字符失败了,怎么办?移动一个字符,重头再来?当然不好,那就是朴素路线了。我们能否从跌倒的地方继续走呢?
既然字串M[0 - i]已经匹配成功,那就从这个子串上做文章。举个栗子     

S序号
j
j + 1
 j + 2
j + 3
j + 4
j + 5
 j+6
j + 7
。。。
S串
a
b
c
a
b
c
d
e
。。。
M串
a
b
c
a
b
d



M序号

0
1
2
3
4
5




此时匹配失败在M串的第5个字符,前4个字符已经匹配成功。
如果从跌倒的地方出发,则需要存在M[0, 4]的子串M[0, k] == S[j+4-k , j+4]。
由于M[0, 4] == S[j ,  j+4] 则有 字串S[j+4-k, j+4] == M[4-k, 4]。综上有M[0, k] == M[4-k, 4]
如果这样的k不存在,那就老老实实的朴素了。
从上面的表格可以直观的看出,下一次匹配只要把M串移动到 j + 3 位置,从 j+5 开始匹配就可以。很容易看出来 在已经匹配成功的字串M[0 , 4]中有最长的子串 (M[0 , 1] == M[3 , 4]),这个就是问题的关键。
因此KMP的核心部分就是计算模式串的各个子串的 k。

实例
首先我们来看一下字符串的朴素匹配.
可以想象成把文本串s固定住,模式串p从s最左边开始对齐,如果对齐的部分完全一样,则匹配成功,失败则将模式串p整体往右移1位,继续检查对齐部分,如此反复.

#朴素匹配 
def naive_match(s, p): 
 m = len(s); n = len(p) 
 for i in range(m-n+1):#起始指针i 
  if s[i:i+n] == p: 
   return True 
 return False 

关于kmp算法,讲的最好的当属阮一峰的<字符串匹配的KMP算法>.一路读下来,豁然开朗.
其实就是,对模式串p进行预处理,得到前后缀的部分匹配表,使得我们可以借助已知信息,算出可以右移多少位.即 kmp = 朴素匹配 + 移动多位.
更多细节请看阮一峰的文章,这里就不展开了.
下面给出python的代码实现.

#KMP 
def kmp_match(s, p): 
 m = len(s); n = len(p) 
 cur = 0#起始指针cur 
 table = partial_table(p) 
 while cur<=m-n: 
  for i in range(n): 
   if s[i+cur]!=p[i]: 
    cur += max(i - table[i-1], 1)#有了部分匹配表,我们不只是单纯的1位1位往右移,可以一次移动多位 
    break 
  else: 
   return True 
 return False 
 
#部分匹配表 
def partial_table(p): 
 '''''partial_table("ABCDABD") -> [0, 0, 0, 0, 1, 2, 0]''' 
 prefix = set() 
 postfix = set() 
 ret = [0] 
 for i in range(1,len(p)): 
  prefix.add(p[:i]) 
  postfix = {p[j:i+1] for j in range(1,i+1)} 
  ret.append(len((prefix&postfix or {''}).pop())) 
 return ret 
 
print naive_match("BBC ABCDAB ABCDABCDABDE", "ABCDABD") 
print partial_table("ABCDABD") 
print kmp_match("BBC ABCDAB ABCDABCDABDE", "ABCDABD") 

 类似资料:
  • 本文向大家介绍python实现kmp算法的实例代码,包括了python实现kmp算法的实例代码的使用技巧和注意事项,需要的朋友参考一下 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置 比如 abababc 那么bab在其位置1处,bc在其位置5处 我们首先想到的最简单的办法就是蛮力的一个字符一个字符的匹配,但那样的时间复杂度会是O(m*n) kmp算

  • 本文向大家介绍Luhn算法学习及其Ruby版实现代码示例,包括了Luhn算法学习及其Ruby版实现代码示例的使用技巧和注意事项,需要的朋友参考一下 关于LUHN算法 LUHN算法,主要用来计算信用卡等证件号码的合法性。 1、从卡号最后一位数字开始,偶数位乘以2,如果乘以2的结果是两位数,将两个位上数字相加保存。 2、把所有数字相加,得到总和。 3、如果信用卡号码是合法的,总和可以被10整除。 Lu

  • 本文向大家介绍详解KMP算法以及python如何实现,包括了详解KMP算法以及python如何实现的使用技巧和注意事项,需要的朋友参考一下 算法思路 Knuth-Morris-Pratt(KMP)算法是解决字符串匹配问题的经典算法,下面通过一个例子来演示一下: 给定字符串"BBC ABCDAB ABCDABCDABDE",检查里面是否包含另一个字符串"ABCDABD"。 1.从头开始依次匹配字符,

  • 本文向大家介绍KMP 算法实例详解,包括了KMP 算法实例详解的使用技巧和注意事项,需要的朋友参考一下 KMP 算法实例详解 KMP算法,是由Knuth,Morris,Pratt共同提出的模式匹配算法,其对于任何模式和目标序列,都可以在线性时间内完成匹配查找,而不会发生退化,是一个非常优秀的模式匹配算法。 分析:KMP模板题、KMP的关键是求出next的值、先预处理出next的值、然后一遍扫过、复

  • 本文向大家介绍扩展KMP算法(Extend KMP),包括了扩展KMP算法(Extend KMP)的使用技巧和注意事项,需要的朋友参考一下 扩展kmp既是求模式串和主串的每一个后缀的最长公共前缀 即令s[i]表示主串中以第i个位置为起始的后缀,则B[i]表示s[i]和模式串的最长公共前缀 显然KMP是求s[i]=模式串长度的情况,所以,扩展KMP是对KMP的拓展 像求KMP的next数组一样,我们

  • 本文向大家介绍C语言 位运算详解及示例代码,包括了C语言 位运算详解及示例代码的使用技巧和注意事项,需要的朋友参考一下 所谓位运算,就是对一个比特(Bit)位进行操作。在《二进制思想以及数据的存储》一节中讲到,比特(Bit)是一个电子元器件,8个比特构成一个字节(Byte),它已经是粒度最小的可操作单元了。 C语言提供了六种位运算符: 运算符 & | ^ ~ << >> 说明 按位与 按位或 按位