当前位置: 首页 > 编程笔记 >

链表的原理及java实现代码示例

韩华美
2023-03-14
本文向大家介绍链表的原理及java实现代码示例,包括了链表的原理及java实现代码示例的使用技巧和注意事项,需要的朋友参考一下

一:单向链表基本介绍

链表是一种数据结构,和数组同级。比如,Java中我们使用的ArrayList,其实现原理是数组。而LinkedList的实现原理就是链表了。链表在进行循环遍历时效率不高,但是插入和删除时优势明显。下面对单向链表做一个介绍。

单链表的概念

链表是最基本的数据结构,其存储的你原理图如下图所示

上面展示的是一个单链表的存储原理图,简单易懂,head为头节点,他不存放任何的数据,只是充当一个指向链表中真正存放数据的第一个节点的作用,而每个节点中都有一个next引用,指向下一个节点,就这样一节一节往下面记录,直到最后一个节点,其中的next指向null。

链表有很多种,比如单链表,双链表等等。我们就对单链表进行学习,其他的懂了原理其实是一样的。

单向链表是一种线性表,实际上是由节点(Node)组成的,一个链表拥有不定数量的节点。其数据在内存中存储是不连续的,它存储的数据分散在内存中,每个结点只能也只有它能知道下一个结点的存储位置。由N各节点(Node)组成单向链表,每一个Node记录本Node的数据及下一个Node。向外暴露的只有一个头节点(Head),我们对链表的所有操作,都是直接或者间接地通过其头节点来进行的。

上图中最左边的节点即为头结点(Head),但是添加节点的顺序是从右向左的,添加的新节点会被作为新节点。最先添加的节点对下一节点的引用可以为空。引用是引用下一个节点而非下一个节点的对象。因为有着不断的引用,所以头节点就可以操作所有节点了。

下图描述了单向链表存储情况。存储是分散的,每一个节点只要记录下一节点,就把所有数据串了起来,形成了一个单向链表。

节点(Node)是由一个需要储存的对象及对下一个节点的引用组成的。也就是说,节点拥有两个成员:储存的对象、对下一个节点的引用。下面图是具体的说明:

二、单项链表的实现

package com.zjn.LinkAndQueue;
/**
 * 自定义链表设计
 * 
 * @author zjn
 *
 */
public class MyLink {
	Node head = null;
	// 头节点
	/**
   * 链表中的节点,data代表节点的值,next是指向下一个节点的引用
   * 
   * @author zjn
   *
   */
	class Node {
		Node next = null;
		// 节点的引用,指向下一个节点
		int data;
		// 节点的对象,即内容
		public Node(int data) {
			this.data = data;
		}
	}
	/**
   * 向链表中插入数据
   * 
   * @param d
   */
	public void addNode(int d) {
		Node newNode = new Node(d);
		// 实例化一个节点
		if (head == null) {
			head = newNode;
			return;
		}
		Node tmp = head;
		while (tmp.next != null) {
			tmp = tmp.next;
		}
		tmp.next = newNode;
	}
	/**
   * 
   * @param index:删除第index个节点
   * @return
   */
	public Boolean deleteNode(int index) {
		if (index < 1 || index > length()) {
			return false;
		}
		if (index == 1) {
			head = head.next;
			return true;
		}
		int i = 1;
		Node preNode = head;
		Node curNode = preNode.next;
		while (curNode != null) {
			if (i == index) {
				preNode.next = curNode.next;
				return true;
			}
			preNode = curNode;
			curNode = curNode.next;
			i++;
		}
		return false;
	}
	/**
   * 
   * @return 返回节点长度
   */
	public int length() {
		int length = 0;
		Node tmp = head;
		while (tmp != null) {
			length++;
			tmp = tmp.next;
		}
		return length;
	}
	/**
   * 在不知道头指针的情况下删除指定节点
   * 
   * @param n
   * @return
   */
	public Boolean deleteNode11(Node n) {
		if (n == null || n.next == null)
		      return false;
		int tmp = n.data;
		n.data = n.next.data;
		n.next.data = tmp;
		n.next = n.next.next;
		System.out.println("删除成功!");
		return true;
	}
	public void printList() {
		Node tmp = head;
		while (tmp != null) {
			System.out.println(tmp.data);
			tmp = tmp.next;
		}
	}
	public static void main(String[] args) {
		MyLink list = new MyLink();
		list.addNode(5);
		list.addNode(3);
		list.addNode(1);
		list.addNode(2);
		list.addNode(55);
		list.addNode(36);
		System.out.println("linkLength:" + list.length());
		System.out.println("head.data:" + list.head.data);
		list.printList();
		list.deleteNode(4);
		System.out.println("After deleteNode(4):");
		list.printList();
	}
}

三、链表相关的常用操作实现方法

1. 链表反转

/**
   * 链表反转
   * 
   * @param head
   * @return
   */
  public Node ReverseIteratively(Node head) {
    Node pReversedHead = head;
    Node pNode = head;
    Node pPrev = null;
    while (pNode != null) {
      Node pNext = pNode.next;
      if (pNext == null) {
        pReversedHead = pNode;
      }
      pNode.next = pPrev;
      pPrev = pNode;
      pNode = pNext;
    }
    this.head = pReversedHead;
    return this.head;
  }

2. 查找单链表的中间节点

采用快慢指针的方式查找单链表的中间节点,快指针一次走两步,慢指针一次走一步,当快指针走完时,慢指针刚好到达中间节点。

/**
   * 查找单链表的中间节点
   * 
   * @param head
   * @return
   */
  public Node SearchMid(Node head) {
    Node p = this.head, q = this.head;
    while (p != null && p.next != null && p.next.next != null) {
      p = p.next.next;
      q = q.next;
    }
    System.out.println("Mid:" + q.data);
    return q;
  }

3. 查找倒数第k个元素

采用两个指针P1,P2,P1先前移K步,然后P1、P2同时移动,当p1移动到尾部时,P2所指位置的元素即倒数第k个元素 。

/**
   * 查找倒数 第k个元素
   * 
   * @param head
   * @param k
   * @return
   */
  public Node findElem(Node head, int k) {
    if (k < 1 || k > this.length()) {
      return null;
    }
    Node p1 = head;
    Node p2 = head;
    for (int i = 0; i < k; i++)// 前移k步
      p1 = p1.next;
    while (p1 != null) {
      p1 = p1.next;
      p2 = p2.next;
    }
    return p2;
  }

4. 对链表进行排序

/**
   * 排序
   * 
   * @return
   */
public Node orderList() {
	Node nextNode = null;
	int tmp = 0;
	Node curNode = head;
	while (curNode.next != null) {
		nextNode = curNode.next;
		while (nextNode != null) {
			if (curNode.data > nextNode.data) {
				tmp = curNode.data;
				curNode.data = nextNode.data;
				nextNode.data = tmp;
			}
			nextNode = nextNode.next;
		}
		curNode = curNode.next;
	}
	return head;
}

5. 删除链表中的重复节点

/**
   * 删除重复节点
   */
  public void deleteDuplecate(Node head) {
    Node p = head;
    while (p != null) {
      Node q = p;
      while (q.next != null) {
        if (p.data == q.next.data) {
          q.next = q.next.next;
        } else
          q = q.next;
      }
      p = p.next;
    }

  }

6. 从尾到头输出单链表,采用递归方式实现

/**
   * 从尾到头输出单链表,采用递归方式实现
   * 
   * @param pListHead
   */
  public void printListReversely(Node pListHead) {
    if (pListHead != null) {
      printListReversely(pListHead.next);
      System.out.println("printListReversely:" + pListHead.data);
    }
  }

7. 判断链表是否有环,有环情况下找出环的入口节点

/**
   * 判断链表是否有环,单向链表有环时,尾节点相同
   * 
   * @param head
   * @return
   */
  public boolean IsLoop(Node head) {
    Node fast = head, slow = head;
    if (fast == null) {
      return false;
    }
    while (fast != null && fast.next != null) {
      fast = fast.next.next;
      slow = slow.next;
      if (fast == slow) {
        System.out.println("该链表有环");
        return true;
      }
    }
    return !(fast == null || fast.next == null);
  }

  /**
   * 找出链表环的入口
   * 
   * @param head
   * @return
   */
  public Node FindLoopPort(Node head) {
    Node fast = head, slow = head;
    while (fast != null && fast.next != null) {
      slow = slow.next;
      fast = fast.next.next;
      if (slow == fast)
        break;
    }
    if (fast == null || fast.next == null)
      return null;
    slow = head;
    while (slow != fast) {
      slow = slow.next;
      fast = fast.next;
    }
    return slow;
  }

总结

以上就是本文关于链表的原理及java实现代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Java编程实现递增排序链表的合并

Java面试题-实现复杂链表的复制代码分享

Java输出链表倒数第k个节点

如有不足之处,欢迎留言指出。

 类似资料:
  • 本文向大家介绍Java  队列实现原理及简单实现代码,包括了Java  队列实现原理及简单实现代码的使用技巧和注意事项,需要的朋友参考一下 Java 队列实现原理 “队列”这个单词是英国人说的“排”。在英国“排队”的意思就是站到一排当中去。计算机科学中,队列是一种数据结构,有点类似栈,只是在队列中第一个插入的数据项也会最先被移除,而在栈中,最后插入的数据项最先移除。队列的作用就像电影院前的人们站成

  • 本文向大家介绍冒泡排序的原理及java代码实现,包括了冒泡排序的原理及java代码实现的使用技巧和注意事项,需要的朋友参考一下 概述 冒泡排序是一种简单的排序算法。它重复地走访要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的开始。 简单点说,就是: 冒泡排序是將比較大的

  • 本文向大家介绍Java Unsafe类实现原理及测试代码,包括了Java Unsafe类实现原理及测试代码的使用技巧和注意事项,需要的朋友参考一下 Unsafe类介绍 第一次看到这个类时被它的名字吓到了,居然还有一个类自名Unsafe?读完本文,大家也能发现Unsafe类确实有点不那么安全,它能实现一些不那么常见的功能。 Unsafe类使Java拥有了像C语言的指针一样操作内存空间的能力,同时也带

  • 本文向大家介绍Java单链表的实现代码,包括了Java单链表的实现代码的使用技巧和注意事项,需要的朋友参考一下 下面是小编给大家分享的一个使用java写单链表,有问题欢迎给我留言哦。 首先定义一个Node类 接下来定义一个单链表,并实现相关方法: 最后我们可以通过测试类来做相关测试: 至此,对单链表的操作就笔记到这里了。 以上所述是小编给大家介绍的Java单链表的实现代码,希望对大家有所帮助,如果

  • 本文向大家介绍Java语言实现反转链表代码示例,包括了Java语言实现反转链表代码示例的使用技巧和注意事项,需要的朋友参考一下 问题描述 定义一个函数,输入一个链表的头结点,反转该链表并输出反转后的链表的头结点。链表结点如下: 思路1: 要想反转链表,对于结点i,我们要把它的next指向它的前趋,因此我们需要保存前趋结点,同时,如果我们已经把i的next重新赋值,会无法找到i的后继,因此,在重新赋

  • 本文向大家介绍Java SPI机制原理及代码实例,包括了Java SPI机制原理及代码实例的使用技巧和注意事项,需要的朋友参考一下 SPI的全名为:Service Provider Interface,大多数开发人员可能不熟悉,因为这个是针对厂商或者插件的。在java.util.ServiceLoader的文档里有比较详细的介绍。 简单的总结下 Java SPI 机制的思想。我们系统里抽象的各个模