在神经网络计算过程中,经常会遇到需要将矩阵中的某些元素取出并且单独进行计算的步骤(例如MLE,Attention等操作)。那么在 tensorflow 的 Variable 类型中如何做到这一点呢?
首先假设 Variable 是一个一维数组 A:
import numpy as np import tensorflow as tf a = np.array([1, 2, 3, 4, 5, 6, 7, 8]) A = tf.Variable(a)
我们把我们想取出的元素的索引存到 B 中,如果我们只想取出数组 A 中的某一个元素,则 B 的设定为:
b = np.array([3]) B = tf.placeholder(dtype=tf.int32, shape=[1])
由于我们的索引坐标只有一维,所以 shape=1。
取出元素然后组合成tensor C 的操作如下:
C = tf.gather_nd(A, B)
运行:
init = tf.global_variables_initializer() with tf.Session() as sess: init.run() feed_dict = {B: b} result = sess.run([C], feed_dict=feed_dict) print result
得到:
[4]
如果我们想取出一维数组中的多个元素,则需要把每一个想取出的元素索引都单独放一行:
b = np.array([[3], [2], [5], [0]]) B = tf.placeholder(dtype=tf.int32, shape=[4, 1])
此时由于我们想要从一维数组中索引 4 个数,所以 shape=[4, 1]
再次运行得到:
[4 3 6 1]
////////////////////////////////////////////////////////////////////////////////////华丽丽的分割线
假设 Variable 是一个二维矩阵 A:
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) A = tf.Variable(a)
首先我们先取出 A 中的一个元素,需要给定该元素的行列坐标,存到 B 中:
b = np.array([2,3]) B = tf.placeholder(dtype=tf.int32, shape=[2])
注意由于我们输入的索引坐标变成了二维,所以shape也变为2。
取出元素然后组合成tensor C:
C = tf.gather_nd(A, B)
运行:
init = tf.global_variables_initializer() with tf.Session() as sess: init.run() feed_dict = {B: b} result = sess.run([C], feed_dict=feed_dict) print result
得到:
[12]
同样的,如果我们想取出二维矩阵中的多个元素,则需要把每一个想取出的元素的索引都单独放一行:
b = np.array([[2, 3], [1, 0], [2, 2], [0, 1]]) B = tf.placeholder(dtype=tf.int32, shape=[4, 2])
此时由于我们想要从二维矩阵中索引出 4 个数,所以 shape=[4, 2]
再次运行得到:
[12 5 11 2]
////////////////////////////////////////////////////////////////////////////////////华丽丽的分割线
推广到 n 维矩阵中:
假设 A 是 Variable 类型的 n 维矩阵,我们想取出矩阵中的 m 个元素,那么首先每个元素的索引坐标要表示成列表的形式:
index = [x1, x2, x3, ..., xn]
其中 xj 代表该元素在 n 维矩阵中第 j 维的位置。
其次每个坐标要单独占索引矩阵的一行:
index_matrix = [[x11, x12, x13, ..., x1n], [x21, x22, x23, ..., x2n], [x31, x32, x33, ..., x3n], ......................................., [xm1, xm2, xm3, ..., xmn]]
最后用 tf.gather_nd() 函数替换即可:
result = tf.gather_nd(A, index_matrix)
////////////////////////////////////////////////////////////////////////////////////华丽丽的分割线
[注] 问题出自:https://stackoverflow.com/questions/44793286/slicing-tensorflow-tensor-with-tensor
以上这篇将tensorflow.Variable中的某些元素取出组成一个新的矩阵示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。
我有以下问题: 我有一个矩阵。现在,我想在矩阵的每一行中删除一个条目:在包含某个数字(比如4)的行中,我想删除带有该数字的条目,在其他行中,我只想删除最后一个元素。 如果我有矩阵 这给了 2 0 4 0 删除后应该只是 2. 0 谢谢你的帮助!
考虑矩阵: 然后,列表: 如果badcombos矩阵中的任何颜色组合出现在列表中(即上例中的子列表[[3]]和[[4]]),则将从列表中删除,我如何根据这些条件“减少”列表。
在R中,我可以在矩阵和(共形)向量之间进行分段乘法,例如: 矩阵的每一行都与相应的向量元素相乘。我也可以对维度大于2的数组做同样的事情: 同样,每一行都与相应的向量元素相乘。我能为3d阵列和2d矩阵做类似的事情吗?我只想让数组中的每个子矩阵都按元素乘以一个矩阵。
所以我正在研究一个Leetcode问题,我的代码在某些情况下有效,但在某些情况下失败。 问题是: 给定一个矩阵,其中每个行和列都按升序排序,找出矩阵中第k个最小的元素。 请注意,它是排序顺序中的第k个最小元素,而不是第k个独立元素。 例子: 返回: 13 我的方法是使用minHeap,即使它声明数组已经排序,我仍然需要确保我已经将它从最小值排序到最大值。 这是我的代码: 以下是我的意见: 以下是输
基于我下面链接的相关问题(请参见@Aleh solution):我希望只计算给定幂的矩阵中列之间的唯一乘积。 例如,对于N=5,M=3,p=2,我们得到列(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)的乘积。我想修改(@Aleh)代码,只计算(1,1)、(1,2)、(1,3)、(2,2)、(2,3)、(3,3)列之间的乘积。但我想对每个第
这是一个面试问题。 在具有排序行和列的矩阵中找到Kth最小元素。 Kth最小元素是中的一个,例如,这是否正确?