最近看到linux的设备驱动模型,关于Kobject、Kset等还不是很清淅。看到了struct device_driver这个结构时,想到一个问题:它的初始化函数到底在哪里调用呢?以前搞PCI驱动时用pci驱动注册函数就可以调用它,搞s3c2410驱动时只要在mach-smdk2410.c中的struct platform_device *smdk2410_devices {}中加入设备也会调用。但从来就没有想过具体的驱动注册并调用probe的过程。
于是打开SourceInsight追踪了一下:
从driver_register看起:
int driver_register(struct device_driver * drv) { klist_init(&drv->klist_devices, klist_devices_get, klist_devices_put); init_completion(&drv->unloaded); return bus_add_driver(drv); }
klist_init与init_completion没去管它,可能是2.6的这个设备模型要做的一些工作。直觉告诉我要去bus_add_driver。
bus_add_driver中:
都是些Kobject 与 klist 、attr等。还是与设备模型有关的。但是其中有一句:
driver_attach(drv);
单听名字就很像:
void driver_attach(struct device_driver * drv) { bus_for_each_dev(drv->bus, NULL, drv, __driver_attach); }
这个熟悉,遍历总线上的设备并设用__driver_attach。
在__driver_attach中又主要是这样:
driver_probe_device(drv, dev);
跑到driver_probe_device中去看看:
有一段很重要:
if (drv->bus->match && !drv->bus->match(dev, drv)) goto Done;
明显,是调用的驱动的总线上的match函数。如果返回1,则可以继续,否则就Done了。
继承执行的话:
if (drv->probe) { ret = drv->probe(dev); if (ret) { dev->driver = NULL; goto ProbeFailed; }
只要probe存在则调用之。至此就完成了probe的调用。
这个过程链的关键还是在drv->bus->match ,因为其余的地方出错的话就是注册失败,而只要注册不失败且match返回1,那么就铁定会调用驱程的probe了。你可以注册一个总线类型和总线,并在match中总是返回 1, 会发现,只要struct device_driver中的bus类型正确时,probe函数总是被调用.
PCI设备有自己的总线模型,估计在它的match中就有一个判断的条件。
static int pci_bus_match(struct device *dev, struct device_driver *drv) { struct pci_dev *pci_dev = to_pci_dev(dev); struct pci_driver *pci_drv = to_pci_driver(drv); const struct pci_device_id *found_id; found_id = pci_match_device(pci_drv, pci_dev); if (found_id) return 1; return 0; }
再往下跟踪就知道主要是根据我们熟悉的id_table来的。
-------------------------------另解-----------------------------------------------------------------------------------------------
从driver_register看起,此处我的这里是:
int driver_register(struct device_driver * drv) { if ((drv->bus->probe && drv->probe) || (drv->bus->remove && drv->remove) || (drv->bus->shutdown && drv->shutdown)) { printk(KERN_WARNING "Driver '%s' needs updating - please use bus_type methods\n", drv->name); } klist_init(&drv->klist_devices, NULL, NULL); return bus_add_driver(drv); }
klist_init不相关,不用管他,具体再去看bus_add_driver:
int bus_add_driver(struct device_driver *drv) { //1.先kobject_set_name(&drv->kobj, "%s", drv->name); //2.再kobject_register(&drv->kobj) //3.然后调用了:driver_attach(drv) }
int driver_attach(struct device_driver * drv) { return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach); }
真正起作用的是__driver_attach:
static int __driver_attach(struct device * dev, void * data) { ... if (!dev->driver) driver_probe_device(drv, dev); ... } int driver_probe_device(struct device_driver * drv, struct device * dev) { ... //1.先是判断bus是否match: if (drv->bus->match && !drv->bus->match(dev, drv)) goto done; //2.再具体执行probe: ret = really_probe(dev, drv); ... }
really_probe才是我们要找的函数:
static int really_probe(struct device *dev, struct device_driver *drv) { ... //1.先是调用的驱动所属总线的probe函数: if (dev->bus->probe) { ret = dev->bus->probe(dev); if (ret) goto probe_failed; } else if (drv->probe) { //2.再调用你的驱动中的probe函数: ret = drv->probe(dev); if (ret) goto probe_failed; } ... }
其中,drv->probe(dev),才是真正调用你的驱动实现的具体的probe函数。
也就是对应此文标题所问的,probe函数此时被调用。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍Linux被中断的系统如何调用详解,包括了Linux被中断的系统如何调用详解的使用技巧和注意事项,需要的朋友参考一下 前言 慢系统调用,指的是可能永远无法返回,从而使进程永远阻塞的系统调用,比如无客户连接时的accept、无输入时的read都属于慢速系统调用。 在Linux中,当阻塞于某个慢系统调用的进程捕获一个信号,则该系统调用就会被中断,转而执行信号处理函数,这就是被中断的系统调
问题内容: 构造函数何时被调用? 创建对象之前。 在对象创建期间。 创建对象之后。 问题答案: 分配对象内存,初始化具有初始值的字段变量,然后调用构造函数,但是其代码在对象超类的构造函数代码之后执行。
本文向大家介绍Linux lseek函数的使用详解,包括了Linux lseek函数的使用详解的使用技巧和注意事项,需要的朋友参考一下 注:如果文章内容有误,请留言指出,谢谢合作。 名字 Name : lseek - reposition read/write file offset lseek函数的作用是用来重新定位文件读写的位移。 头文件以及函数声明 offset为正则向文件末尾移动(向前移)
本文向大家介绍javascript回调函数详解,包括了javascript回调函数详解的使用技巧和注意事项,需要的朋友参考一下 在高级语言层出不穷的年代, 各个语言都号称有着一切皆为对象的自豪说法, 而 js 作为一门脚本语言却相对于java等传统面向对象语言有很大的不同之处, 除了 js 诡异的继承体系之外, 最令人着迷的一个特性就是回调函数, 当然也有很多人对他诟病, 笔者认为 回调函数 和
本文向大家介绍javascript 回调函数详解,包括了javascript 回调函数详解的使用技巧和注意事项,需要的朋友参考一下 回调函数定义 回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用为调用它所指向的函数时,我们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事件或条
本文向大家介绍linux编程之pipe()函数详解,包括了linux编程之pipe()函数详解的使用技巧和注意事项,需要的朋友参考一下 管道是一种把两个进程之间的标准输入和标准输出连接起来的机制,从而提供一种让多个进程间通信的方法,当进程创建管道时,每次都需要提供两个文件描述符来操作管道。其中一个对管道进行写操作,另一个对管道进行读操作。对管道的读写与一般的IO系统函数一致,使用write()函数