一. 线程池简介
1. 线程池的概念:
线程池就是首先创建一些线程,它们的集合称为线程池。使用线程池可以很好地提高性能,线程池在系统启动时即创建大量空闲的线程,程序将一个任务传给线程池,线程池就会启动一条线程来执行这个任务,执行结束以后,该线程并不会死亡,而是再次返回线程池中成为空闲状态,等待执行下一个任务。
2. 线程池的工作机制
2.1 在线程池的编程模式下,任务是提交给整个线程池,而不是直接提交给某个线程,线程池在拿到任务后,就在内部寻找是否有空闲的线程,如果有,则将任务交给某个空闲的线程。
2.2 一个线程同时只能执行一个任务,但可以同时向一个线程池提交多个任务。
3. 使用线程池的原因:
多线程运行时间,系统不断的启动和关闭新线程,成本非常高,会过渡消耗系统资源,以及过渡切换线程的危险,从而可能导致系统资源的崩溃。这时,线程池就是最好的选择了。
二. 四种常见的线程池详解
1. 线程池的返回值ExecutorService简介:
ExecutorService是Java提供的用于管理线程池的类。该类的两个作用:控制线程数量和重用线程
2. 具体的4种常用的线程池实现如下:(返回值都是ExecutorService)
2.1 Executors.newCacheThreadPool():可缓存线程池,先查看池中有没有以前建立的线程,如果有,就直接使用。如果没有,就建一个新的线程加入池中,缓存型池子通常用于执行一些生存期很短的异步型任务
示例代码:
package com.study.test; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class ThreadPoolExecutorTest { public static void main(String[] args) { //创建一个可缓存线程池 ExecutorService cachedThreadPool = Executors.newCachedThreadPool(); for (int i = 0; i < 10; i++) { try { //sleep可明显看到使用的是线程池里面以前的线程,没有创建新的线程 Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } cachedThreadPool.execute(new Runnable() { public void run() { //打印正在执行的缓存线程信息 System.out.println(Thread.currentThread().getName()+"正在被执行"); } }); } } }
输出结果:
pool-1-thread-1正在被执行
pool-1-thread-1正在被执行
pool-1-thread-1正在被执行
pool-1-thread-1正在被执行
pool-1-thread-1正在被执行
pool-1-thread-1正在被执行
pool-1-thread-1正在被执行
pool-1-thread-1正在被执行
pool-1-thread-1正在被执行
pool-1-thread-1正在被执行
线程池为无限大,当执行当前任务时上一个任务已经完成,会复用执行上一个任务的线程,而不用每次新建线程
2.2 Executors.newFixedThreadPool(int n):创建一个可重用固定个数的线程池,以共享的无界队列方式来运行这些线程。
示例代码:
package com.study.test; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class ThreadPoolExecutorTest { public static void main(String[] args) { //创建一个可重用固定个数的线程池 ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3); for (int i = 0; i < 10; i++) { fixedThreadPool.execute(new Runnable() { public void run() { try { //打印正在执行的缓存线程信息 System.out.println(Thread.currentThread().getName()+"正在被执行"); Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } } }); } } }
输出结果:
pool-1-thread-1正在被执行
pool-1-thread-2正在被执行
pool-1-thread-3正在被执行
pool-1-thread-1正在被执行
pool-1-thread-2正在被执行
pool-1-thread-3正在被执行
pool-1-thread-1正在被执行
pool-1-thread-2正在被执行
pool-1-thread-3正在被执行
pool-1-thread-1正在被执行
因为线程池大小为3,每个任务输出打印结果后sleep 2秒,所以每两秒打印3个结果。
定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()
2.3 Executors.newScheduledThreadPool(int n):创建一个定长线程池,支持定时及周期性任务执行
延迟执行示例代码:
package com.study.test; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; public class ThreadPoolExecutorTest { public static void main(String[] args) { //创建一个定长线程池,支持定时及周期性任务执行——延迟执行 ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5); //延迟1秒执行 scheduledThreadPool.schedule(new Runnable() { public void run() { System.out.println("延迟1秒执行"); } }, 1, TimeUnit.SECONDS); } }
输出结果:
延迟1秒执行
定期执行示例代码:
package com.study.test; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; public class ThreadPoolExecutorTest { public static void main(String[] args) { //创建一个定长线程池,支持定时及周期性任务执行——定期执行 ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5); //延迟1秒后每3秒执行一次 scheduledThreadPool.scheduleAtFixedRate(new Runnable() { public void run() { System.out.println("延迟1秒后每3秒执行一次"); } }, 1, 3, TimeUnit.SECONDS); } }
输出结果:
延迟1秒后每3秒执行一次
延迟1秒后每3秒执行一次
.............
2.4 Executors.newSingleThreadExecutor():创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。
示例代码:
package com.study.test; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class TestThreadPoolExecutor { public static void main(String[] args) { //创建一个单线程化的线程池 ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor(); for (int i = 0; i < 10; i++) { final int index = i; singleThreadExecutor.execute(new Runnable() { public void run() { try { //结果依次输出,相当于顺序执行各个任务 System.out.println(Thread.currentThread().getName()+"正在被执行,打印的值是:"+index); Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } }); } } }
输出结果:
pool-1-thread-1正在被执行,打印的值是:0
pool-1-thread-1正在被执行,打印的值是:1
pool-1-thread-1正在被执行,打印的值是:2
pool-1-thread-1正在被执行,打印的值是:3
pool-1-thread-1正在被执行,打印的值是:4
pool-1-thread-1正在被执行,打印的值是:5
pool-1-thread-1正在被执行,打印的值是:6
pool-1-thread-1正在被执行,打印的值是:7
pool-1-thread-1正在被执行,打印的值是:8
pool-1-thread-1正在被执行,打印的值是:9
三. 缓冲队列BlockingQueue和自定义线程池ThreadPoolExecutor
1. 缓冲队列BlockingQueue简介:
BlockingQueue是双缓冲队列。BlockingQueue内部使用两条队列,允许两个线程同时向队列一个存储,一个取出操作。在保证并发安全的同时,提高了队列的存取效率。
2. 常用的几种BlockingQueue:
3. 自定义线程池(ThreadPoolExecutor和BlockingQueue连用):
自定义线程池,可以用ThreadPoolExecutor类创建,它有多个构造方法来创建线程池。
常见的构造函数:ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue)
示例代码:
package com.study.test; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.BlockingQueue; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; class TempThread implements Runnable { @Override public void run() { // 打印正在执行的缓存线程信息 System.out.println(Thread.currentThread().getName() + "正在被执行"); try { // sleep一秒保证3个任务在分别在3个线程上执行 Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } public class TestThreadPoolExecutor { public static void main(String[] args) { // 创建数组型缓冲等待队列 BlockingQueue<Runnable> bq = new ArrayBlockingQueue<Runnable>(10); // ThreadPoolExecutor:创建自定义线程池,池中保存的线程数为3,允许最大的线程数为6 ThreadPoolExecutor tpe = new ThreadPoolExecutor(3, 6, 50, TimeUnit.MILLISECONDS, bq); // 创建3个任务 Runnable t1 = new TempThread(); Runnable t2 = new TempThread(); Runnable t3 = new TempThread(); // Runnable t4 = new TempThread(); // Runnable t5 = new TempThread(); // Runnable t6 = new TempThread(); // 3个任务在分别在3个线程上执行 tpe.execute(t1); tpe.execute(t2); tpe.execute(t3); // tpe.execute(t4); // tpe.execute(t5); // tpe.execute(t6); // 关闭自定义线程池 tpe.shutdown(); } }
输出结果:
pool-1-thread-1正在被执行
pool-1-thread-2正在被执行
pool-1-thread-3正在被执行
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对小牛知识库的支持。如果你想了解更多相关内容请查看下面相关链接
本文向大家介绍四种Java线程池用法解析,包括了四种Java线程池用法解析的使用技巧和注意事项,需要的朋友参考一下 本文为大家分析四种Java线程池用法,供大家参考,具体内容如下 1、new Thread的弊端 执行一个异步任务你还只是如下new Thread吗? 那你就out太多了,new Thread的弊端如下: a. 每次new Thread新建对象性能差。 b. 线程缺乏统一管理,可能无限
本文向大家介绍Java中的字符串常量池详细介绍,包括了Java中的字符串常量池详细介绍的使用技巧和注意事项,需要的朋友参考一下 Java中字符串对象创建有两种形式,一种为字面量形式,如String str = "droid";,另一种就是使用new这种标准的构造对象的方法,如String str = new String("droid");,这两种方式我们在代码编写时都经常使用,尤其是字面量的方式
本文向大家介绍Activity 四种启动模式详细介绍,包括了Activity 四种启动模式详细介绍的使用技巧和注意事项,需要的朋友参考一下 Activity 四种启动模式详细介绍 在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。 Android总Acti
本文向大家介绍java中多线程的超详细介绍,包括了java中多线程的超详细介绍的使用技巧和注意事项,需要的朋友参考一下 1、线程概述 几乎所有的操作系统都支持同时运行多个任务,一个任务通常就是一个程序,每个运行中的程序就是一个进程。当一个程序运行时,内部可能包含了多个顺序执行流,每个顺序执行流就是一个线程。 2、线程与进程 进程概述: 几乎所有的操作系统都支持进程的概念,所有运行中的任务通常对应一
本文向大家介绍Java ThreadPoolExecutor 线程池的使用介绍,包括了Java ThreadPoolExecutor 线程池的使用介绍的使用技巧和注意事项,需要的朋友参考一下 Executors Executors 是一个Java中的工具类. 提供工厂方法来创建不同类型的线程池. 从上图中也可以看出, Executors的创建线程池的方法, 创建出来的线程池都实现了 Executo
本文向大家介绍浅谈java常用的几种线程池比较,包括了浅谈java常用的几种线程池比较的使用技巧和注意事项,需要的朋友参考一下 1. 为什么使用线程池 诸如 Web 服务器、数据库服务器、文件服务器或邮件服务器之类的许多服务器应用程序都面向处理来自某些远程来源的大量短小的任务。请求以某种方式到达服务器,这种方式可能是通过网络协议(例如 HTTP、FTP 或 POP)、通过 JMS 队列或者可能通过