综述
在Android系统中,出于对性能优化的考虑,对于Android的UI操作并不是线程安全的。也就是说若是有多个线程来操作UI组件,就会有可能导致线程安全问题。所以在Android中规定只能在UI线程中对UI进行操作。这个UI线程是在应用第一次启动时开启的,也称之为主线程(Main Thread),该线程专门用来操作UI组件,在这个UI线程中我们不能进行耗时操作,否则就会出现ANR(Application Not Responding)现象。如果我们在子线程中去操作UI,那么程序就回给我们抛出异常。这是因为在ViewRootImpl中对操作UI的线程进行检查。如果操作UI的线程不是主线程则抛出异常(对于在检查线程之前在非UI线程已经操作UI组件的情况除外)。所以这时候我们若是在子线程中更新UI的话可以通过Handler来完成这一操作。
Handler用法简介
在开发中,我们对Handler的使用也基本上算是家常便饭了。在这里我们就简单的说一下Handler的几种用法示例,就不在具体给出Demo进行演示。在这里我们只针对后面这一种情形来看一下Handler的使用:在子线程完成任务后通过Handler发送消息,然后在主线程中去操作UI。
一般来说我们会在主线程中创建一个Handler的匿名内部类,然后重写它的handleMessage方法来处理我们的UI操作。代码如下所示。
private Handler mHandler = new Handler(){ @Override public void handleMessage(Message msg) { switch (msg.what){ //根据msg.what的值来处理不同的UI操作 case WHAT: break; default: super.handleMessage(msg); break; } } };
我们还可以不去创建一个Handler的子类对象,直接去实现Handler里的CallBack接口,Handler通过回调CallBack接口里的handleMessage方法从而实现对UI的操作。
private Handler mHandler = new Handler(new Handler.Callback() { @Override public boolean handleMessage(Message msg) { return false; } });
然后我们就可以在子线程中发送消息了。
new Thread(new Runnable() { @Override public void run() { //子线程任务 ... //发送方式一 直接发送一个空的Message mHandler.sendEmptyMessage(WHAT); //发送方式二 通过sendToTarget发送 mHandler.obtainMessage(WHAT,arg1,arg2,obj).sendToTarget(); //发送方式三 创建一个Message 通过sendMessage发送 Message message = mHandler.obtainMessage(); message.what = WHAT; mHandler.sendMessage(message); } }).start();
在上面我们给出了三种不同的发送方式,当然对于我们还可以通过sendMessageDelayed进行延时发送等等。如果我们的Handler只需要处理一条消息的时候,我们可以通过post一系列方法进行处理。
private Handler mHandler = new Handler(); new Thread(new Runnable() { @Override public void run() { mHandler.post(new Runnable() { @Override public void run() { //UI操作 ... } }); } }).start();
在Handler中处理UI操作时,上面的Handler对象必须是在主线程创建的。如果我们想在子线程中去new一个Handler对象的话,就需要为Handler指定Looper。
private Handler mHandler; new Thread(new Runnable() { @Override public void run() { mHandler = new Handler(Looper.getMainLooper()){ @Override public void handleMessage(Message msg) { super.handleMessage(msg); //UI操作 ... } }; } }).start();
对于这个Looper是什么,下面我们会详细介绍。对于Handler的使用依然存在一个问题,由于我们创建的Handler是一个匿名内部类,他会隐式的持有外部类的一个对象(当然内部类也是一样的),而往往在子线程中是一个耗时的操作,而这个线程也持有Handler的引用,所以这个子线程间接的持有这个外部类的对象。我们假设这个外部类是一个Activity,而有一种情况就是我们的Activity已经销毁,而子线程仍在运行。由于这个线程持有Activity的对象,所以,在Handler中消息处理完之前,这个Activity就一直得不到回收,从而导致了内存泄露。如果内存泄露过多,则会导致OOM(OutOfMemory),也就是内存溢出。那么有没有什么好的解决办法呢?
我们可以通过两种方案来解决,第一种方法我们在Activity销毁的同时也杀死这个子线程,并且将相对应的Message从消息队列中移除;第二种方案则是我们创建一个继承自Handler的静态内部类。因为静态内部类不会持有外部类的对象。可是这时候我们无法去访问外部类的非静态的成员变量,也就无法对UI进行操作。这时候我们就需要在这个静态html" target="_blank">内部类中使用弱引用的方式去指向这个Activity对象。下面我们看一下示例代码。
static class MyHandler extends Handler{ private final WeakReference<MyActivity> mActivity; public MyHandler(MyActivity activity){ super(); mActivity = new WeakReference<MyActivity>(activity); } @Override public void handleMessage(Message msg) { MyActivity myActivity = mActivity.get(); if (myActivity!=null){ myActivity.textView.setText("123456789"); } } }
Handler工作过程
在上面我们简单的说明了Handler是如何使用的。那么现在我们就来看一下这个Handler是如何工作的。在Android的消息机制中主要是由Handler,Looper,MessageQueue,Message等组成。而Handler得运行依赖后三者。那么我们就来看一下它们是如何联系在一起的。
Looper
在一个Android应用启动的时候,会创建一个主线程,也就是UI线程。而这个主线程也就是ActivityThread。在ActivityThread中有一个静态的main方法。这个main方法也就是我们应用程序的入口点。我们来看一下这个main方法。
public static void main(String[] args) { ...... Looper.prepareMainLooper(); ActivityThread thread = new ActivityThread(); thread.attach(false); ...... Looper.loop(); throw new RuntimeException("Main thread loop unexpectedly exited"); }
在上面代码中通过prepareMainLooper方法为主线程创建一个Looper,而loop则是开启消息循环。从上面代码我们可以猜想到在loop方法中应该存在一个死循环,否则给我们抛出RuntimeException。也就是说主线程的消息循环是不允许被退出的。下面我们就来看一下这个Looper类。
首先我们看一下Looper的构造方法。
private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); }
在这个构造方法中创建了一个消息队列。并且保存当前线程的对象。其中quitAllowed参数表示是否允许退出消息循环。但是我们注意到这个构造方法是private,也就是说我们自己不能手动new一个Looper对象。那么我们就来看一下如何创建一个Looper对象。之后在Looper类中我们找到下面这个方法。
private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }
在这里新建了一个Looper对象,然后将这个对象保存在ThreadLocal中,当我们下次需要用到Looper的之后直接从这个sThreadLocal中取出即可。在这里简单说明一下ThreadLocal这个类,ThreadLocal它实现了本地变量存储,我们将当前线程的数据存放在ThreadLocal中,若是有多个变量共用一个ThreadLocal对象,这时候在当前线程只能获取该线程所存储的变量,而无法获取其他线程的数据。在Looper这个类中为我们提供了myLooper来获取当前线程的Looper对象。从上面的方法还能够看出,一个线程只能创建一次Looper对象。然后我们在看一下这个prepare在哪里被使用的。
public static void prepare() { prepare(true); } public static void prepareMainLooper() { prepare(false); synchronized (Looper.class) { if (sMainLooper != null) { throw new IllegalStateException("The main Looper has already been prepared."); } sMainLooper = myLooper(); } }
prepare方法:这个是用于在子线程中创建一个Looper对象,在子线程中是可以退出消息循环的。
prepareMainLooper方法:这个方法在上面的ActivityThread中的main方法中我们就已经见到过了。它是为主线程创建一个Looper,在主线程创建Looper对象中,就设置了不允许退出消息循环。并且将主线程的Looper保存在sMainLooper中,我们可以通过getMainLooper方法来获取主线程的Looper。
在ActivityThread中的main方法中除了创建一个Looper对象外,还做了另外一件事,那就是通过loop方法开启消息循环。那么我们就来看一下这个loop方法做了什么事情。
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } msg.target.dispatchMessage(msg); if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
第2~6行:获取当前线程中的Looper,并从Looper中获得消息队列。
第10~11行:确保当前线程属于当前进程,并且记录真实的token。clearCallingIdentity的实现是在native层,对于具体是如何实现的就不在进行分析。
第14~18行:从消息队列中取出消息,并且只有当取出的消息为空的时候才会跳出循环。
第27行:将消息重新交由Handler处理。
第35~42行:确保调用过程中线程没有被销毁。
第44行:对消息进行回收处理。
和我们刚才猜想的一样,在loop中确实存在一个死循环,而唯一退出该循环的方式就是消息队列返回的消息为空。然后我们通过消息队列的next()方法获得消息。msg.target是发送消息的Handler,通过Handler中的dispatchMessage方法又将消息交由Handler处理。消息处理完成之后便对消息进行回收处理。在这里我们也能够通过quit和quitSafely退出消息循环。
public void quit() { mQueue.quit(false); } public void quitSafely() { mQueue.quit(true); }
我们可以看出对于消息循环的退出,实际上就是调用消息队列的quit方法。这时候从MessageQueue的next方法中取出的消息也就是null了。下面我们来看一下这个MessageQueue。
MessageQueue
MessageQueue翻译为消息队里,在这个消息队列中是采用单链表的方式实现的,提高插入删除的效率。对于MessageQueue在这里我们也只看一下它的入队和出队操作。
MessageQueue入队方法。
boolean enqueueMessage(Message msg, long when) { ...... synchronized (this) { ...... msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); } } return true; }
在这里我们简单说一下这个入队的方法。消息的插入过程是在第13~36行完成了。在这里首先判断首先判断消息队列里有没有消息,没有的话则将当前插入的消息作为队头,并且这时消息队列如果处于等待状态的话则将其唤醒。若是在中间插入,则根据Message创建的时间进行插入。
MessageQueue出队方法。
Message next() { ...... int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (DEBUG) Log.v(TAG, "Returning message: " + msg); msg.markInUse(); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } // Process the quit message now that all pending messages have been handled. if (mQuitting) { dispose(); return null; } ...... } ..... } }
第11行:nativePollOnce方法在native层,若是nextPollTimeoutMillis为-1,这时候消息队列处于等待状态。
第25~42行:按照我们设置的时间取出消息。
第43~45行:这时候消息队列中没有消息,将nextPollTimeoutMillis设为-1,下次循环消息队列则处于等待状态。
第48~52行:退出消息队列,返回null,这时候Looper中的消息循环也会终止。
最后我们在看一下退出消息队列的方法:
void quit(boolean safe) { if (!mQuitAllowed) { throw new IllegalStateException("Main thread not allowed to quit."); } synchronized (this) { if (mQuitting) { return; } mQuitting = true; if (safe) { removeAllFutureMessagesLocked(); } else { removeAllMessagesLocked(); } // We can assume mPtr != 0 because mQuitting was previously false. nativeWake(mPtr); } }
从上面我们可以看到主线程的消息队列是不允许被退出的。并且在这里通过将mQuitting设为true从而退出消息队列。也使得消息循环被退出。到这里我们介绍了Looper和MessageQueue,就来看一下二者在Handler中的作用。
Handler
在这里我们首先看一下Handler的构造方法。
public Handler(Callback callback, boolean async) { ...... mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
从这个构造方法中我们可以看出在一个没有创建Looper的线程中是无法创建一个Handler对象的。所以说我们在子线程中创建一个Handler时首先需要创建Looper,并且开启消息循环才能够使用这个Handler。但是在上面的例子中我们确实在子线程中new了一个Handler对象。我们再来看一下上面那个例子的构造方法。
public Handler(Looper looper, Callback callback, boolean async) { mLooper = looper; mQueue = looper.mQueue; mCallback = callback; mAsynchronous = async; }
在这个构造方法中我们为Handler指定了一个Looper对象。也就说在上面的例子中我们在子线程创建的Handler中为其指定了主线程的Looper,也就等价于在主线程中创建Handler对象。下面我们就来看一下Handler是如何发送消息的。
对于Handler的发送方式可以分为post和send两种方式。我们先来看一下这个post的发送方式。
public final boolean post(Runnable r) { return sendMessageDelayed(getPostMessage(r), 0); }
在这里很明显可以看出来,将post参数中的Runnable转换成了Message对象,然后还是通过send方式发出消息。我们就来看一下这个getPostMessage方法。
private static Message getPostMessage(Runnable r) { Message m = Message.obtain(); m.callback = r; return m; }
在这里也是将我们实现的Runnable交给了Message对象的callback属性。并返回该Message对象。
既然post发送也是由send发送方式进行的,那么我们一路找下去,最终消息的发送交由sendMessageAtTime方法进行处理。我们就来看一下这个sendMessageAtTime方法。
public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
然后再来看一下enqueueMessage方法。
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
到这里我们可以看出来了所谓通过Handler发送消息只不过是在Looper创建的消息队列中插入一条消息而已。而在Looper中只不过通过loop取出消息,然后交由Handler中的dispatchMessage方发进行消息分发处理。下面我们来看一下dispatchMessage方法。
public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
这里面的逻辑也是非常的简单,msg.callback就是我们通过post里的Runnable对象。而handleCallback也就是去执行Runnable中的run方法。
private static void handleCallback(Message message) { message.callback.run(); }
mCallback就是我们所实现的回调接口。最后才是对我们继承Handler类中重写的handleMessage进行执行。可见其中的优先级顺序为post>CallBack>send;
到这里我们对整个Handler的工作过程也就分析完了。现在我们想要通过主线程发送消息给子线程,然后由子线程接收消息并进行处理。这样一种操作也就很容易实现了。我们来看一下怎么实现。
package com.example.ljd.myapplication; import android.os.Bundle; import android.os.Handler; import android.os.Looper; import android.os.Message; import android.util.Log; import android.support.v7.app.AppCompatActivity; import android.view.View; import android.widget.Button; public class MyActivity extends AppCompatActivity { private final String TAG = "MyActivity"; public Handler mHandler; public Button button; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); button = (Button) findViewById(R.id.send_btn); button.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { if (mHandler != null){ mHandler.obtainMessage(0,"你好,我是从主线程过来的").sendToTarget(); } } }); new Thread(new Runnable() { @Override public void run() { //在子线程中创建一个Looper对象 Looper.prepare(); mHandler = new Handler(){ @Override public void handleMessage(Message msg) { if (msg.what == 0){ Log.d(TAG,(String)msg.obj); } } }; //开启消息循环 Looper.loop(); } }).start(); } }
点击按钮我们看一下运行结果。
总结
在这里我们重新整理一下我们的思路,看一下这个Handler的整个工作流程。在主线程创建的时候为主线程创建一个Looper,创建Looper的同时在Looper内部创建一个消息队列。而在创键Handler的时候取出当前线程的Looper,并通过该Looper对象获得消息队列,然后Handler在子线程中发送消息也就是在该消息队列中添加一条Message。最后通过Looper中的消息循环取得这条Message并且交由Handler处理。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍Android Handler消息机制?相关面试题,主要包含被问及Android Handler消息机制?时的应答技巧和注意事项,需要的朋友参考一下 作用: 跨线程通信。当子线程中进行耗时操作后需要更新UI时,通过Handler将有关UI的操作切换到主线程中执行。 四要素: Message(消息):需要被传递的消息,其中包含了消息ID,消息处理对象以及处理的数据等,由MessageQ
本文向大家介绍Android消息处理机制Looper和Handler详解,包括了Android消息处理机制Looper和Handler详解的使用技巧和注意事项,需要的朋友参考一下 Android系统的消息队列和消息循环都是针对具体线程的,一个线程可以存在(当然也可以不存在)一个消息队列和一个消 息循环(Looper),特定线程的消息只能分发给本线程,不能进行跨线程,跨进程通讯。但是创建的工作线程默
本文向大家介绍Android异步消息机制详解,包括了Android异步消息机制详解的使用技巧和注意事项,需要的朋友参考一下 Android中的异步消息机制分为四个部分:Message、Handler、MessageQueue和Looper。 其中,Message是线程之间传递的消息,其what、arg1、arg2字段可以携带整型数据,obj字段可以携带一个Object对象。 Handler是处理者
本文向大家介绍Android Handler消息派发机制源码分析,包括了Android Handler消息派发机制源码分析的使用技巧和注意事项,需要的朋友参考一下 注:这里只是说一下sendmessage的一个过程,post就类似的 如果我们需要发送消息,会调用sendMessage方法 这个方法会调用如下的这个方法 接下来设定延迟时间,然后继续调用sendMessageAtTime方法 这里
主要内容:本节引言,1.学习路线图:,2.Handler类的引入:,3.Handler的执行流程图:,4.Handler的相关方法:,5.Handler的使用示例:,本节小结本节引言 前两节中我们对Android中的两种事件处理机制进行了学习,关于响应的事件响应就这两种;本节给大家讲解的 是Activity中UI组件中的信息传递Handler,相信很多朋友都知道,Android为了线程安全,并不允许我们在UI线程外操作UI;很多时候我们做界面刷新都需要通过Handler来通知UI组件更新!除了用
一、消息机制概述 1.消息机制的简介 在Android中使用消息机制,我们首先想到的就是Handler。没错,Handler是Android消息机制的上层接口。Handler的使用过程很简单,通过它可以轻松地将一个任务切换到Handler所在的线程中去执行。通常情况下,Handler的使用场景就是更新UI。 如下就是使用消息机制的一个简单实例: public class Activity exte