当前位置: 首页 > 编程笔记 >

Python编程之黑板上排列组合,你舍得解开吗

骆磊
2023-03-14
本文向大家介绍Python编程之黑板上排列组合,你舍得解开吗,包括了Python编程之黑板上排列组合,你舍得解开吗的使用技巧和注意事项,需要的朋友参考一下

考虑这样一个问题,给定一个矩阵(多维数组,numpy.ndarray()),如何shuffle这个矩阵(也就是对其行进行全排列),如何随机地选择其中的k行,这叫组合,实现一种某一维度空间的切片。例如五列中选三列(全部三列的排列数),便从原有的五维空间中降维到三维空间,因为是全部的排列数,故不会漏掉任何一种可能性。

涉及的函数主要有:

np.random.permutation()
itertools.combinations()
itertools.permutations()

# 1. 对0-5之间的数进行一次全排列
>>>np.random.permutation(6)
array([3, 1, 5, 4, 0, 2])

# 2. 创建待排矩阵
>>>A = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

# 3. shuffle矩阵A
>>>p = np.random.permutation(A.shape[0])
>>>p
array([1, 2, 0])
>>>A[p, :]     
array([[ 5, 6, 7, 8],
  [ 9, 10, 11, 12],
  [ 1, 2, 3, 4]])

C52的实现

>>>from itertools import combinations
>>>combins = [c for c in combinations(range(5), 2)]
>>>len(combins)
10
>>>combins    # 而且是按序排列
[(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]

A52的实现

>>>from itertools import permutations
>>>pertumations(range(5), 2)
<itertools.permutations object at 0x0233E360>

>>>perms = permutations(range(5), 2)
>>>perms
[(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1),
 (2, 3), (2, 4), (3, 0), (3, 1), (3, 2), (3, 4), (4, 0), (4, 1), (4, 2), (4, 3)]
>>>len(perms)
20
# 5. 任取其中的k(k=2)行
>>>c = [c for c in combinations(range(A.shape[0]), 2)]
>>>A[c[0], :]   # 一种排列
array([[1, 2, 3, 4],
  [5, 6, 7, 8]])

下面再介绍一个列表数据任意组合,主要是利用自带的库

#_*_ coding:utf-8 _*_
#__author__='dragon'
import itertools
list1 = [1,2,3,4,5]
list2 = []
for i in range(1,len(list1)+1):
 iter = itertools.combinations(list1,i)
 list2.append(list(iter))
print(list2)
[[(1,), (2,), (3,), (4,), (5,)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)], [(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5)], [(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 5), (1, 3, 4, 5), (2, 3, 4, 5)], [(1, 2, 3, 4, 5)]]

排列的实现

#_*_ coding:utf-8 _*_
#__author__='dragon'
import itertools
list1 = [1,2,3,4,5]
list2 = []
for i in range(1,len(list1)+1):
 iter = itertools.permutations(list1,i)
 list2.append(list(iter))
print(list2)

运行结果:

[[(1,), (2,), (3,), (4,), (5,)], [(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4)], [(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 2), (1, 3, 4), (1, 3, 5), (1, 4, 2), (1, 4, 3), (1, 4, 5), (1, 5, 2), (1, 5, 3), (1, 5, 4), (2, 1, 3), (2, 1, 4), (2, 1, 5), (2, 3, 1), (2, 3, 4), (2, 3, 5), (2, 4, 1), (2, 4, 3), (2, 4, 5), (2, 5, 1), (2, 5, 3), (2, 5, 4), (3, 1, 2), (3, 1, 4), (3, 1, 5), (3, 2, 1), (3, 2, 4), (3, 2, 5), (3, 4, 1), (3, 4, 2), (3, 4, 5), (3, 5, 1), (3, 5, 2), (3, 5, 4), (4, 1, 2), (4, 1, 3), (4, 1, 5), (4, 2, 1), (4, 2, 3), (4, 2, 5), (4, 3, 1), (4, 3, 2), (4, 3, 5), (4, 5, 1), (4, 5, 2), (4, 5, 3), (5, 1, 2), (5, 1, 3), (5, 1, 4), (5, 2, 1), (5, 2, 3), (5, 2, 4), (5, 3, 1), (5, 3, 2), (5, 3, 4), (5, 4, 1), (5, 4, 2), (5, 4, 3)], [(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 4, 3), (1, 2, 4, 5), (1, 2, 5, 3), (1, 2, 5, 4), (1, 3, 2, 4), (1, 3, 2, 5), (1, 3, 4, 2), (1, 3, 4, 5), (1, 3, 5, 2), (1, 3, 5, 4), (1, 4, 2, 3), (1, 4, 2, 5), (1, 4, 3, 2), (1, 4, 3, 5), (1, 4, 5, 2), (1, 4, 5, 3), (1, 5, 2, 3), (1, 5, 2, 4), (1, 5, 3, 2), (1, 5, 3, 4), (1, 5, 4, 2), (1, 5, 4, 3), (2, 1, 3, 4), (2, 1, 3, 5), (2, 1, 4, 3), (2, 1, 4, 5), (2, 1, 5, 3), (2, 1, 5, 4), (2, 3, 1, 4), (2, 3, 1, 5), (2, 3, 4, 1), (2, 3, 4, 5), (2, 3, 5, 1), (2, 3, 5, 4), (2, 4, 1, 3), (2, 4, 1, 5), (2, 4, 3, 1), (2, 4, 3, 5), (2, 4, 5, 1), (2, 4, 5, 3), (2, 5, 1, 3), (2, 5, 1, 4), (2, 5, 3, 1), (2, 5, 3, 4), (2, 5, 4, 1), (2, 5, 4, 3), (3, 1, 2, 4), (3, 1, 2, 5), (3, 1, 4, 2), (3, 1, 4, 5), (3, 1, 5, 2), (3, 1, 5, 4), (3, 2, 1, 4), (3, 2, 1, 5), (3, 2, 4, 1), (3, 2, 4, 5), (3, 2, 5, 1), (3, 2, 5, 4), (3, 4, 1, 2), (3, 4, 1, 5), (3, 4, 2, 1), (3, 4, 2, 5), (3, 4, 5, 1), (3, 4, 5, 2), (3, 5, 1, 2), (3, 5, 1, 4), (3, 5, 2, 1), (3, 5, 2, 4), (3, 5, 4, 1), (3, 5, 4, 2), (4, 1, 2, 3), (4, 1, 2, 5), (4, 1, 3, 2), (4, 1, 3, 5), (4, 1, 5, 2), (4, 1, 5, 3), (4, 2, 1, 3), (4, 2, 1, 5), (4, 2, 3, 1), (4, 2, 3, 5), (4, 2, 5, 1), (4, 2, 5, 3), (4, 3, 1, 2), (4, 3, 1, 5), (4, 3, 2, 1), (4, 3, 2, 5), (4, 3, 5, 1), (4, 3, 5, 2), (4, 5, 1, 2), (4, 5, 1, 3), (4, 5, 2, 1), (4, 5, 2, 3), (4, 5, 3, 1), (4, 5, 3, 2), (5, 1, 2, 3), (5, 1, 2, 4), (5, 1, 3, 2), (5, 1, 3, 4), (5, 1, 4, 2), (5, 1, 4, 3), (5, 2, 1, 3), (5, 2, 1, 4), (5, 2, 3, 1), (5, 2, 3, 4), (5, 2, 4, 1), (5, 2, 4, 3), (5, 3, 1, 2), (5, 3, 1, 4), (5, 3, 2, 1), (5, 3, 2, 4), (5, 3, 4, 1), (5, 3, 4, 2), (5, 4, 1, 2), (5, 4, 1, 3), (5, 4, 2, 1), (5, 4, 2, 3), (5, 4, 3, 1), (5, 4, 3, 2)], [(1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 2, 5, 4, 3), (1, 3, 2, 4, 5), (1, 3, 2, 5, 4), (1, 3, 4, 2, 5), (1, 3, 4, 5, 2), (1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 4, 2, 3, 5), (1, 4, 2, 5, 3), (1, 4, 3, 2, 5), (1, 4, 3, 5, 2), (1, 4, 5, 2, 3), (1, 4, 5, 3, 2), (1, 5, 2, 3, 4), (1, 5, 2, 4, 3), (1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (1, 5, 4, 2, 3), (1, 5, 4, 3, 2), (2, 1, 3, 4, 5), (2, 1, 3, 5, 4), (2, 1, 4, 3, 5), (2, 1, 4, 5, 3), (2, 1, 5, 3, 4), (2, 1, 5, 4, 3), (2, 3, 1, 4, 5), (2, 3, 1, 5, 4), (2, 3, 4, 1, 5), (2, 3, 4, 5, 1), (2, 3, 5, 1, 4), (2, 3, 5, 4, 1), (2, 4, 1, 3, 5), (2, 4, 1, 5, 3), (2, 4, 3, 1, 5), (2, 4, 3, 5, 1), (2, 4, 5, 1, 3), (2, 4, 5, 3, 1), (2, 5, 1, 3, 4), (2, 5, 1, 4, 3), (2, 5, 3, 1, 4), (2, 5, 3, 4, 1), (2, 5, 4, 1, 3), (2, 5, 4, 3, 1), (3, 1, 2, 4, 5), (3, 1, 2, 5, 4), (3, 1, 4, 2, 5), (3, 1, 4, 5, 2), (3, 1, 5, 2, 4), (3, 1, 5, 4, 2), (3, 2, 1, 4, 5), (3, 2, 1, 5, 4), (3, 2, 4, 1, 5), (3, 2, 4, 5, 1), (3, 2, 5, 1, 4), (3, 2, 5, 4, 1), (3, 4, 1, 2, 5), (3, 4, 1, 5, 2), (3, 4, 2, 1, 5), (3, 4, 2, 5, 1), (3, 4, 5, 1, 2), (3, 4, 5, 2, 1), (3, 5, 1, 2, 4), (3, 5, 1, 4, 2), (3, 5, 2, 1, 4), (3, 5, 2, 4, 1), (3, 5, 4, 1, 2), (3, 5, 4, 2, 1), (4, 1, 2, 3, 5), (4, 1, 2, 5, 3), (4, 1, 3, 2, 5), (4, 1, 3, 5, 2), (4, 1, 5, 2, 3), (4, 1, 5, 3, 2), (4, 2, 1, 3, 5), (4, 2, 1, 5, 3), (4, 2, 3, 1, 5), (4, 2, 3, 5, 1), (4, 2, 5, 1, 3), (4, 2, 5, 3, 1), (4, 3, 1, 2, 5), (4, 3, 1, 5, 2), (4, 3, 2, 1, 5), (4, 3, 2, 5, 1), (4, 3, 5, 1, 2), (4, 3, 5, 2, 1), (4, 5, 1, 2, 3), (4, 5, 1, 3, 2), (4, 5, 2, 1, 3), (4, 5, 2, 3, 1), (4, 5, 3, 1, 2), (4, 5, 3, 2, 1), (5, 1, 2, 3, 4), (5, 1, 2, 4, 3), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2), (5, 1, 4, 2, 3), (5, 1, 4, 3, 2), (5, 2, 1, 3, 4), (5, 2, 1, 4, 3), (5, 2, 3, 1, 4), (5, 2, 3, 4, 1), (5, 2, 4, 1, 3), (5, 2, 4, 3, 1), (5, 3, 1, 2, 4), (5, 3, 1, 4, 2), (5, 3, 2, 1, 4), (5, 3, 2, 4, 1), (5, 3, 4, 1, 2), (5, 3, 4, 2, 1), (5, 4, 1, 2, 3), (5, 4, 1, 3, 2), (5, 4, 2, 1, 3), (5, 4, 2, 3, 1), (5, 4, 3, 1, 2), (5, 4, 3, 2, 1)]]

可以根据你需要随意组合

python实现排列组合公式C(m,n)求值

# -*- coding:utf-8 -*- 
# 用python实现排列组合C(n,m) = n!/m!*(n-m)! 
def get_value(n): 
 if n==1: 
  return n 
 else: 
  return n * get_value(n-1) 
def gen_last_value(n,m): 
  first = get_value(n) 
  print "n:%s  value:%s"%(n, first) 
  second = get_value(m) 
  print "n:%s  value:%s"%(m, second) 
  third = get_value((n-m)) 
  print "n:%s  value:%s"%((n-m), third) 
  return first/(second * third) 
   
if __name__ == "__main__": 
 # C(12,5) 
 rest = gen_last_value(5,3) 
 print "value:", rest 

运行结果:

n:5  value:120
n:3  value:6
n:2  value:2
value: 10

总结

以上就是本文关于Python排列组合算法的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:Python数据结构与算法之列表(链表,linked list)简单实现、Python算法之求n个节点不同二叉树个数等,有什么问题可以随时留言,小编会及时回复大家的。

 类似资料:
  • 排列 下一个排列 LeetCode - 31. 下一个排列 题目描述 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。 必须原地修改,只允许使用额外常数空间。 以下是一些例子,输入位于左侧列,其相应输出位于右侧列。 1,2,3 → 1,3,2 3,2,1 → 1,2,3 1,1,5

  • 本文向大家介绍python黑魔法之编码转换,包括了python黑魔法之编码转换的使用技巧和注意事项,需要的朋友参考一下 我们在使用其他语言的库做编码转换时,对于无法理解的字符,通常的处理也只有两种(或三种): 抛异常 替换成替代字符 跳过 但是在复杂的现实世界中,由于各种不靠谱,我们处理的文本总会出现那么些不和谐因素,比如混合编码。在这种情况下,又回到了上面的处理办法。 那么问题来了,python

  • 由于原书很多地方过于简略,笔者根据实际测试情况和最新的技术发展对内容做了大量的变更,当然最重要的是个人偏好。

  • 问题内容: 我正在寻找Java的库,该库将生成集合的所有可能的顺序排列。我可以找到的唯一库是Google代码上的combinatoricslib。我很难相信这是唯一执行此操作的Java库,并且坦率地说,对此感到非常惊讶。 JDK,Apache Commons Math或另一个库中是否有提供相同功能的东西? 我很高兴使用combinatoricslib,除了我自己编写算法之外,我简直不敢相信这是唯一

  • 我试图从黑莓的本机日历中读取“day”值,该值以整数形式返回,并映射到一周中每一天的值。这些值如下所示: 周一:32768 星期二:16384 周三:8192 周四:4096 周五:2048 sat:1024 孙:65536 如果事件发生在一天内,我可以看到值是否为mon/tue/we/thu/fri/sat/sun 值也与星期一值相同。 现在的问题是,如果事件发生在两天或三天以上 返回所选天数的

  • 问题内容: 给定一个像这样的字典: 如何创建一个字典列表,该列表结合了第一个字典键的各种值?我想要的是: 问题答案: 我认为您想要笛卡尔积,而不是排列,在这种情况下可以提供帮助: