一、concurrent模块的介绍
concurrent.futures模块提供了高度封装的异步调用接口
ThreadPoolExecutor:线程池,提供异步调用
ProcessPoolExecutor:进程池,提供异步调用
ProcessPoolExecutor 和 ThreadPoolExecutor:两者都实现相同的接口,该接口由抽象Executor类定义。
二、基本方法
submit(fn, *args, **kwargs) :异步提交任务
map(func, *iterables, timeout=None, chunksize=1) :取代for循环submit的操作
shutdown(wait=True) :相当于进程池的pool.close()+pool.join()操作
result(timeout=None) :取得结果
add_done_callback(fn) :回调函数
三、进程池和线程池
池的功能:限制进程数或线程数.
什么时候限制: 当并发的任务数量远远大于计算机所能承受的范围,即无法一次性开启过多的任务数量 我就应该考虑去限制我进程数或线程数,从保证服务器不崩.
3.1 进程池
from concurrent.futures import ProcessPoolExecutor from multiprocessing import Process,current_process import time def task(i): print(f'{current_process().name} 在执行任务{i}') time.sleep(1) if __name__ == '__main__': pool = ProcessPoolExecutor(4) # 进程池里又4个进程 for i in range(20): # 20个任务 pool.submit(task,i)# 进程池里当前执行的任务i,池子里的4个进程一次一次执行任务
3.2 线程池
from concurrent.futures import ThreadPoolExecutor from threading import Thread,currentThread import time def task(i): print(f'{currentThread().name} 在执行任务{i}') time.sleep(1) if __name__ == '__main__': pool = ThreadPoolExecutor(4) # 进程池里又4个线程 for i in range(20): # 20个任务 pool.submit(task,i)# 线程池里当前执行的任务i,池子里的4个线程一次一次执行任务
四、Map的用法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import os,time,random def task(n): print('%s is runing' %os.getpid()) time.sleep(random.randint(1,3)) return n**2 if __name__ == '__main__': executor=ThreadPoolExecutor(max_workers=3) # for i in range(20): # future=executor.submit(task,i) executor.map(task,range(1,21)) #map取代了for+submit
五、同步和异步
理解为提交任务的两种方式
同步: 提交了一个任务,必须等任务执行完了(拿到返回值),才能执行下一行代码
异步: 提交了一个任务,不要等执行完了,可以直接执行下一行代码.
同步:相当于执行任务的串行执行
异步
from concurrent.futures import ProcessPoolExecutor from multiprocessing import Process,current_process import time n = 1 def task(i): global n print(f'{current_process().name} 在执行任务{i}') time.sleep(1) n += i return n if __name__ == '__main__': pool = ProcessPoolExecutor(4) # 进程池里又4个线程 pool_lis = [] for i in range(20): # 20个任务 future = pool.submit(task,i)# 进程池里当前执行的任务i,池子里的4个线程一次一次执行任务 # print(future.result()) # 这是在等待我执行任务得到的结果,如果一直没有结果,这里会导致我们所有任务编程了串行 # 在这里就引出了下面的pool.shutdown()方法 pool_lis.append(future) pool.shutdown(wait=True) # 关闭了池的入口,不允许在往里面添加任务了,会等带所有的任务执行完,结束阻塞 for p in pool_lis: print(p.result()) print(n)# 这里一开始肯定是拿到0的,因为我只是去告诉操作系统执行子进程的任务,代码依然会继续往下执行 # 可以用join去解决,等待每一个进程结束后,拿到他的结果
六、回调函数
import time from threading import Thread,currentThread from concurrent.futures import ThreadPoolExecutor def task(i): print(f'{currentThread().name} 在执行{i}') time.sleep(1) return i**2 # parse 就是一个回调函数 def parse(future): # 处理拿到的结果 print(f'{currentThread().name} 结束了当前任务') print(future.result()) if __name__ == '__main__': pool = ThreadPoolExecutor(4) for i in range(20): future = pool.submit(task,i) ''' 给当前执行的任务绑定了一个函数,在当前任务结束的时候就会触发这个函数(称之为回调函数) 会把future对象作为参数传给函数 注:这个称为回调函数,当前任务处理结束了,就回来调parse这个函数 ''' future.add_done_callback(parse) # add_done_callback (parse) parse是一个回调函数 # add_done_callback () 是对象的一个绑定方法,他的参数就是一个函数
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍Python中线程编程之threading模块的使用详解,包括了Python中线程编程之threading模块的使用详解的使用技巧和注意事项,需要的朋友参考一下 threading.Thread Thread 是threading模块中最重要的类之一,可以使用它来创建线程。有两种方式来创建线程:一种是通过继承Thread类,重写它的run方法;另一种是创建一个threading.Th
本文向大家介绍python threading模块操作多线程介绍,包括了python threading模块操作多线程介绍的使用技巧和注意事项,需要的朋友参考一下 python是支持多线程的,并且是native的线程。主要是通过thread和threading这两个模块来实现的。thread是比较底层的模块,threading是对thread做了一些包装的,可以更加方便的被使用。这里需要提一下的是
本文向大家介绍python线程池(threadpool)模块使用笔记详解,包括了python线程池(threadpool)模块使用笔记详解的使用技巧和注意事项,需要的朋友参考一下 最近在做一个视频设备管理的项目,设备包括(摄像机,DVR,NVR等),包括设备信息补全,设备状态推送,设备流地址推送等,如果同时导入的设备数量较多,如果使用单线程进行设备检测,那么由于设备数量较多,会带来较大的延时,因此
本文向大家介绍Python使用cookielib模块操作cookie的实例教程,包括了Python使用cookielib模块操作cookie的实例教程的使用技巧和注意事项,需要的朋友参考一下 cookielib是一个自动处理cookies的模块,如果我们在使用爬虫等技术的时候需要保存cookie,那么cookielib会让你事半功倍!他最常见的搭档模块就是python下的urllib和reques
本文向大家介绍Python使用xlwt模块操作Excel的方法详解,包括了Python使用xlwt模块操作Excel的方法详解的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Python使用xlwt模块操作Excel的方法。分享给大家供大家参考,具体如下: 部分摘自官网文档. 该模块安装很简单 先来个简单的例子: 运行后 会在当前目录生成一个Excel_test.xls 官方例子: 运行这
本文向大家介绍详解python之heapq模块及排序操作,包括了详解python之heapq模块及排序操作的使用技巧和注意事项,需要的朋友参考一下 说到排序,很多人可能第一想到的就是sorted,但是你可能不知道python中其实还有还就中方法哟,并且好多种场景下效率都会比sorted高。那么接下来我就依次来介绍我所知道的排序操作。 sorted(iterable, *, key=None, re