当前位置: 首页 > 编程笔记 >

JSON Web Tokens的实现原理

秦俊豪
2023-03-14
本文向大家介绍JSON Web Tokens的实现原理,包括了JSON Web Tokens的实现原理的使用技巧和注意事项,需要的朋友参考一下

前言

最近在做一个Python项目的改造,将python项目重构为Java项目,过程中遇到了这个知识点,觉得这个蛮实用的,所以下班后回来趁热打铁写下这篇总结,希望后面的人能够有所借鉴,少走弯路。

一、优势简介

JSON Web Tokens简称jwt,是rest接口的一种安全策略。本身有很多的优势:

解决跨域问题:这种基于Token的访问策略可以克服cookies的跨域问题。

服务端无状态可以横向扩展,Token可完成认证,无需存储Session。

系统解耦,Token携带所有的用户信息,无需绑定一个特定的认证方案,只需要知道加密的方法和密钥就可以进行加密解密,有利于解耦。

防止跨站点脚本攻击,没有cookie技术,无需考虑跨站请求的安全问题。

二、原理简介

JSON Web Tokens的格式组成,jwt是一段被base64编码过的字符序列,用点号分隔,一共由三部分组成,头部header,消息体playload和签名sign。

1.jwt的头部Header是json格式:

{
  "typ":"JWT",
  "alg":"HS256",
  "exp":1491066992916
}

其中typ是type的简写,代表该类型是JWT类型,加密方式html" target="_blank">声明是HS256,exp代表当前时间.

2.jwt的消息体Playload

{
  "userid":"123456",
  "iss":"companyName"
}

消息体的具体字段可根据业务需要自行定义和添加,只需在解密的时候注意拿字段的key值获取value。

3.签名sign的生成

最后是签名,签名的生成是把header和playload分别使用base64url编码,接着用'.‘把两个编码后的字符串连接起来,再把这拼接起来的字符串配合密钥进行HMAC SHA-256算法加密,最后再次base64编码下,这就拿到了签名sign. 最后把header和playload和sign用'.‘ 连接起来就生成了整个JWT。

三、校验简介

整个jwt的结构是由header.playload.sign连接组成,只有sign是用密钥加密的,而所有的信息都在header和playload中可以直接获取,sign的作用只是校验header和playload的信息是否被篡改过,所以jwt不能保护数据,但以上的特性可以很好的应用在权限认证上。

1.加密

比如要加密验证的是userid字段,首先按前面的格式组装json消息头header和消息体playload,按header.playload组成字符串,再根据密钥和HS256加密header.playload得到sign签名,最后得到jwtToken为header.playload.sign,在http请求中的url带上参数想后端服务请求认证。

2. 解密

后端服务校验jwtToken是否有权访问接口服务,进行解密认证,如校验访问者的userid,首先

用将字符串按.号切分三段字符串,分别得到header和playload和sign。然后将header.playload拼装用密钥和HAMC SHA-256算法进行加密然后得到新的字符串和sign进行比对,如果一样就代表数据没有被篡改,然后从头部取出exp对存活期进行判断,如果超过了存活期就返回空字符串,如果在存活期内返回userid的值。

四、代码示例

1.python代码的加密解密

#!/usr/bin/env python
# coding: utf-8

from itsdangerous import BadTimeSignature, SignatureExpired
from itsdangerous import TimedJSONWebSignatureSerializer as Serializer

APP_SECRET_KEY="secret"
MAX_TOKEN_AGE=1800
token_generator = Serializer(APP_SECRET_KEY, expires_in=MAX_TOKEN_AGE)

def generate_auth_token(userid):
  access_token = token_generator.dumps({"userid":userid})
  return access_token
def verify_token(token):
  try:
    user_auth = token_generator.loads(token)
    print type(token_generator)
  except SignatureExpired as e:
    raise e
  except BadTimeSignature as e:
    raise e
  return user_auth

2. java代码的加密解密

package api.test.util;

import java.io.UnsupportedEncodingException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

import javax.crypto.Mac;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

import org.apache.commons.codec.binary.Base64;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

import lombok.extern.slf4j.Slf4j;
import net.sf.json.JSONObject;

/**
 * jwt加解密实现
 * 
 * @author zhengsc
 */
@Slf4j
public class TokenUtil {

  private String ISSUER = "companyName"; // 机构

  private String APP_SECRET_KEY = "secret"; // 密钥

  private long MAX_TOKEN_AGE = 1800; // 存活期

  /**
   * 生成userId的accessToken
   * 
   * @param userid
   * @return
   */
  public String generateAccessToken(String userid) {
    JSONObject claims = new JSONObject();
    claims.put("iss", ISSUER);
    claims.put("userid", userid);
    String accessToken = sign(claims, APP_SECRET_KEY);
    return accessToken;
  }

  /**
   * 解密程序返回userid
   * 
   * @param token
   * @return
   */
  public String verifyToken(String token) {
    String userid = "";
    try {
      String[] splitStr = token.split("\\.");
      String headerAndClaimsStr = splitStr[0] + "." +splitStr[1];
      String veryStr = signHmac256(headerAndClaimsStr, APP_SECRET_KEY);
      // 校验数据是否被篡改
      if (veryStr.equals(splitStr[2])) {
        String header = new String(Base64.decodeBase64(splitStr[0]),"UTF-8");
        JSONObject head = JSONObject.fromObject(header);
        long expire = head.getLong("exp") * 1000L;
        long currentTime = System.currentTimeMillis();
        if (currentTime <= expire){ // 验证accessToken的有效期
          String claims = new String(Base64.decodeBase64(splitStr[1]),"UTF-8");
          JSONObject claim = JSONObject.fromObject(claims);
          userid = (String) claim.get("userid");
        }
      }
    } catch (UnsupportedEncodingException e) {
      log.error(e.getMessage(), e);
    }

    return userid;
  }

  /**
   * 组装加密结果jwt返回
   * 
   * @param claims
   * @param appSecretKey
   * @return
   */
  private String sign(JSONObject claims, String appSecretKey) {
    String headerAndClaimsStr = getHeaderAndClaimsStr(claims);
    String signed256 = signHmac256(headerAndClaimsStr, appSecretKey);
    return headerAndClaimsStr + "." + signed256;
  }

  /**
   * 拼接请求头和声明
   * 
   * @param claims
   * @return
   */
  private String getHeaderAndClaimsStr(JSONObject claims) {
    JSONObject header = new JSONObject();
    header.put("alg", "HS256");
    header.put("typ", "JWT");
    header.put("exp", System.currentTimeMillis() + MAX_TOKEN_AGE * 1000L);
    String headerStr = header.toString();
    String claimsStr = claims.toString();
    String headerAndClaimsStr = Base64.encodeBase64URLSafeString(headerStr.getBytes()) + "."
        + Base64.encodeBase64URLSafeString(claimsStr.getBytes());
    return headerAndClaimsStr;
  }

  /**
   * 将headerAndClaimsStr用SHA1加密获取sign
   * 
   * @param headerAndClaimsStr
   * @param appSecretKey
   * @return
   */
  private String signHmac256(String headerAndClaimsStr, String appSecretKey) {
    SecretKey key = new SecretKeySpec(appSecretKey.getBytes(), "HmacSHA256");
    String result = null;
    try {
      Mac mac;
      mac = Mac.getInstance(key.getAlgorithm());
      mac.init(key);
      result = Base64.encodeBase64URLSafeString(mac.doFinal(headerAndClaimsStr.getBytes()));
    } catch (NoSuchAlgorithmException | InvalidKeyException e) {
      log.error(e.getMessage(), e);
    }
    return result;
  }

}

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持小牛知识库!

 类似资料:
  • ILRuntime的实现原理 ILRuntime借助Mono.Cecil库来读取DLL的PE信息,以及当中类型的所有信息,最终得到方法的IL汇编码,然后通过内置的IL解译执行虚拟机来执行DLL中的代码。 IL托管栈和托管对象栈 为了高性能进行运算,尤其是栈上的基础类型运算,如int,float,long之类类型的运算,直接借助C#的Stack类实现IL托管栈肯定是个非常糟糕的做法。因为这意味着每次

  • 整体架构 Apache ShardingSphere 通过解析 SQL,根据配置文件中用户设置的影子规则,对传入的 SQL 进行路由并改写,删除影子字段与字段值。用户无需关注具体过程, 使用时仅对 SQL 进行相应改造,添加影子字段与相应的配置即可。 影子规则 影子规则包含影子字段及映射关系。 处理过程 以 INSERT 语句为例,在写入数据时,Apache ShardingSphere 会对 S

  • 处理流程详解 Apache ShardingSphere 通过对用户输入的 SQL 进行解析,并依据用户提供的加密规则对 SQL 进行改写,从而实现对原文数据进行加密,并将原文数据(可选)及密文数据同时存储到底层数据库。 在用户查询数据时,它仅从数据库中取出密文数据,并对其解密,最终将解密后的原始数据返回给用户。 Apache ShardingSphere 自动化 & 透明化了数据加密过程,让用户

  • 原理说明 考虑到 Apache ShardingSphere 的弹性伸缩模块的几个挑战,目前的弹性伸缩解决方案为:临时地使用两个数据库集群,伸缩完成后切换的方式实现。 这种实现方式有以下优点: 伸缩过程中,原始数据没有任何影响 伸缩失败无风险 不受分片策略限制 同时也存在一定的缺点: 在一定时间内存在冗余服务器 所有数据都需要移动 弹性伸缩模块会通过解析旧分片规则,提取配置中的数据源、数据节点等信

  • 导览 本小节主要介绍 Apache ShardingSphere 分布式事务的实现原理 基于 XA 协议的两阶段事务 基于 Seata 的柔性事务

  • 镜像的实现原理 Docker 镜像是怎么实现增量的修改和维护的? 每个镜像都由很多层次构成,Docker 使用 Union FS 将这些不同的层结合到一个镜像中去。 通常 Union FS 有两个用途, 一方面可以实现不借助 LVM、RAID 将多个 disk 挂到同一个目录下,另一个更常用的就是将一个只读的分支和一个可写的分支联合在一起,Live CD 正是基于此方法可以允许在镜像不变的基础上允

  • 在一节我们介绍了Scheduler,他包含两个功能: 时间切片 优先级调度 本节我们学习这个两个功能是如何在Scheduler中实现的。 时间切片原理 时间切片的本质是模拟实现requestIdleCallback。 除去“浏览器重排/重绘”,下图是浏览器一帧中可以用于执行JS的时机。 一个task(宏任务) -- 队列中全部job(微任务) -- requestAnimationFrame --

  • 主要内容:前记,1.HandlerMapping和HandlerAdapter的交互,2.RequestMappingHandlerAdapter 如何工作,3.RequestMappingHandlerAdapter 如何执行目标方法的前记 根据之前的文章, 在DispatcherServlet初始化的时候会发生HandlerAdapter的初始化 DispatcherServlet#doDispatch() 1.HandlerMapping和HandlerAdapter的交互 生成的默认的H