与优化函数相关的部分在torch.optim模块中,其中包含了大部分现在已有的流行的优化方法。
要想使用optimizer,需要创建一个optimizer 对象,这个对象会保存当前状态,并根据梯度更新参数。
要构造一个Optimizer,需要使用一个用来包含所有参数(Tensor形式)的iterable,把相关参数(如learning rate、weight decay等)装进去。
注意,如果想要使用.cuda()方法来将model移到GPU中,一定要确保这一步在构造Optimizer之前。因为调用.cuda()之后,model里面的参数已经不是之前的参数了。
示例代码如下:
optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum = 0.9) optimizer = optim.Adam([var1, var2], lr = 0.0001)
last_epoch代表上一次的epoch的值,初始值为-1。
也可以用一个dict的iterable指定参数。这里的每个dict都必须要params这个key,params包含它所属的参数列表。除此之外的key必须它的Optimizer(如SGD)里面有的参数。
You can still pass options as keyword arguments. They will be used as defaults, in the groups that didn't override them. This is useful when you only want to vary a single option, while keeping all others consistent between parameter groups.
这在针对特定部分进行操作时很有用。比如只希望给指定的几个层单独设置学习率:
optim.SGD([ {'params': model.base.parameters()}, {'params': model.classifier.parameters(), 'lr': 0.001} ], lr = 0.01, momentum = 0.9)
在上面这段代码中model.base将会使用默认学习率0.01,而model.classifier的参数蒋欢使用0.001的学习率。
所有optimizer都实现了step()方法,调用这个方法可以更新参数,这个方法有以下两种使用方法:
多数optimizer里都可以这么做,每次用backward()这类的方法计算出了梯度后,就可以调用一次这个方法来更新参数。
示例程序:
for input, target in dataset: optimizer.zero_grad() ouput = model(input) loss = loss_fn(output, target) loss.backward() optimizer.step()
有些优化算法会多次重新计算函数(比如Conjugate Gradient、LBFGS),这样的话你就要使用一个闭包(closure)来支持多次计算model的操作。
这个closure的运行过程是,清除梯度,计算loss,返回loss。
(这个我不太理解,因为这些优化算法不熟悉)
示例程序:
for input, target in dataset: def closure(): optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) loss.backward() return loss optimizer.step(closure)
这里就不完整介绍documentation中的内容了,只介绍基类。具体的算法的参数需要理解它们的原理才能明白,这个改天单独来一篇文章介绍。
class torch.optim.Optimizer(params, defaults)
这是所有optimizer的基类。
注意,各参数的顺序必须保证每次运行都一致。有些数据结构就不满足这个条件,比如dictionary的iterator和set。
params(iterable)是torch.Tensor或者dict的iterable。这个参数指定了需要更新的Tensor。
defaults(dict)是一个dict,它包含了默认的的优化选项。
add_param_group(param_group)
这个方法的作用是增加一个参数组,在fine tuning一个预训练的网络时有用。
load_state_dict(state_dict)
这个方法的作用是加载optimizer的状态。
state_dict()
获取一个optimizer的状态(一个dict)。
zero_grad()方法用于清空梯度。
step(closure)用于进行单次更新。
class torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
补充:pytorch里面的Optimizer和optimizer.step()用法
optim.SGD([ {'params': model.base.parameters()}, {'params': model.classifier.parameters(), 'lr': 1e-3} ], lr=1e-2, momentum=0.9)
这意味着model.base的参数将会使用1e-2的学习率,model.classifier的参数将会使用1e-3的学习率,并且0.9的momentum将会被用于所有的参数。
所有的optimizer都实现了step()方法,这个方法会更新所有的参数。它能按两种方式来使用:
optimizer.step()
这是大多数optimizer所支持的简化版本。一旦梯度被如backward()之类的函数计算好后,我们就可以调用这个函数。
例子
for input, target in dataset: optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) loss.backward() optimizer.step() optimizer.step(closure)
一些优化算法例如Conjugate Gradient和LBFGS需要重复多次计算函数,因此你需要传入一个闭包去允许它们重新计算你的模型。
这个闭包应当清空梯度,计算损失,然后返回。
例子:
for input, target in dataset: def closure(): optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) loss.backward() return loss optimizer.step(closure)
以上为个人经验,希望能给大家一个参考,也希望大家多多支持小牛知识库。如有错误或未考虑完全的地方,望不吝赐教。
本文向大家介绍浅析PyTorch中nn.Linear的使用,包括了浅析PyTorch中nn.Linear的使用的使用技巧和注意事项,需要的朋友参考一下 查看源码 Linear 的初始化部分: 需要实现的内容: 计算步骤: 返回的是:input * weight + bias 对于 weight 对于 bias 实例展示 举个例子: 张量的大小由 140 x 100 变成了 140 x 50 执行的
本文向大家介绍pytorch中的inference使用实例,包括了pytorch中的inference使用实例的使用技巧和注意事项,需要的朋友参考一下 这里inference两个程序的连接,如目标检测,可以利用一个程序提取候选框,然后把候选框输入到分类cnn网络中。 这里常需要进行一定的连接。 以上这篇pytorch中的inference使用实例就是小编分享给大家的全部内容了,希望能给大家一个参考
本文向大家介绍对pytorch中x = x.view(x.size(0), -1) 的理解说明,包括了对pytorch中x = x.view(x.size(0), -1) 的理解说明的使用技巧和注意事项,需要的朋友参考一下 在pytorch的CNN代码中经常会看到 首先,在pytorch中的view()函数就是用来改变tensor的形状的,例如将2行3列的tensor变为1行6列,其中-1表示会自
APNG Optimizer 是 APNG 动画的优化工具。 使用方法:apngopt anim.png [anim.opt.png]
Zend Optimizer用优化代码的方法来提高PHP应用程序的执行速度。实现的原理是对那些在被最终执行之前由运行编译器(Run-Time Compiler)产生的代码进行优化。一般情况下,执行使用Zend Optimizer的PHP程序比不使用的要快40%到100%。这意味着网站的访问者可以更快的浏览网页,从而完成更多的事务,创造更好的客户满意度。
Optimize images in your Laravel app This package is the Laravel 6.0 and up specific integration of spatie/image-optimizer. It can optimize PNGs, JPGs, SVGs and GIFs by running them through a chain of