新技术一直在不断变化,掌握一些基础是未来学习不断更新的技术的坚实基础。近来闲来无事,为了温习一下从前学的数据结构,将数据结构中的排序算法用JS实现了一遍,并在本文末尾处嵌入了DEMO。
简单排序
冒泡排序
冒泡排序是最简单排序算法,时间复杂度为n的平方,代码如下:
function bubbleSort(array) { for (var i = 0; i < array.length; i++) { for (var j = array.length; j > 0; j--) { if (array[j] < array[j - 1]) { var temp = array[j - 1]; array[j - 1] = array[j]; array[j] = temp; } } /* 输出结果 */ document.write("这是第 + (i + 1) + "次循环·,结果为:"); for (var k = 0; k < array.length; k++) { document.write(array[k] + ","); } document.write("<br />"); /* 输出结果结束 */ } }
直接插入排序
直接插入排序也属于简单排序算法,时间复杂度也为n的平方,但性能略好于冒泡排序,代码如下:
function insertSort(array) { var temp; for (var i = 1; i < array.length; i++) { var temp = array[i]; for (var j = i; j > 0 && temp < array[j - 1]; j--) { array[j] = array[j - 1]; } array[j] = temp /* 输出结果 */ document.write("第? + i + "遍排序的结果是:") for (var n = 0; n < array.length; n++) { document.write(array[n] + ","); } document.write("<br />") /* 输出结果结束 */ } }
选择排序
选择排序也属于简单排序算法,时间复杂度也为n的平方,性能同样略微好于冒泡排序,代码如下:
function selectSort(array) { var min, temp; ; for (var i = 0; i < array.length; i++) { min = i; for (var j = i + 1; j < array.length; j++) { if (array[min] > array[j]) min = j; } if (min != i) { temp = array[i]; array[i] = array[min]; array[min] = temp; } /* 输出结果 */ document.write("第 + i + "遍排序的结果是:") for (var n = 0; n < array.length; n++) { document.write(array[n] + ","); } document.write("<br />") /* 输出结果结束 */ } }
复杂排序
希尔排序
希尔排序是插入排序的升级,1959年希尔通过将简单排序中两两比较改为设置步长跳跃式比较而突破了n的平方的时间复杂度,希尔排序根据步长的不同时间复杂度由最好的nlogn到最坏的n的平方。代码如下:
function shallSort(array) { var increment = array.length; var i var temp; //暂存 var count = 0; do { increment = Math.floor(increment / 3) + 1; for (i = increment; i < array.length; i++) { if (array[i] < array[i - increment]) { temp = array[i]; for (var j = i - increment; j > 0 && temp < array[j]; j -= increment) { array[j + increment] = array[j]; } array[j + increment] = temp; /* 输出结果 */ count++; document.write("<br />第 + count + "遍排序的结果是:") for (var n = 0; n < array.length; n++) { document.write(array[n] + ","); } /* 输出结果结束 */ } } } while (increment > 1) }
堆排序
堆排序是选择排序的升级,通过不断构建大顶堆或者小顶堆来选择最大或者最小的值放入队列前端进行排序,堆排序任何情况下的时间复杂度都为nlogn,代码如下:
function heapSort(array) { var temp; var i; for (i = Math.floor(array.length / 2); i >= 0; i--) { heapAdjust(array, i, array.length - 1); //将数组array构建成一个大顶堆 } for (i = array.length - 1; i >= 0; i--) { /*把根节点交换出去*/ temp = array[i]; array[i] = array[0]; array[0] = temp; /*余下的数组继续构建成大顶堆*/ heapAdjust(array, 0, i - 1); /* 输出结果 */ document.write("<br />第 + (array.length - i).toString() + "遍排序的结果是:") for (var n = 0; n < array.length; n++) { document.write(array[n] + ","); } /* 输出结果结束 */ } } //要调整的子树 //start为数组开始下标 //max是数组结束下标 function heapAdjust(array, start, max) { var temp, j; temp = array[start];//temp是根节点的值 for (j = 2 * start; j < max; j *= 2) { if (j < max && array[j] < array[j + 1]) { //取得较大孩子的下标 ++j; } if (temp >= array[j]) break; array[start] = array[j]; start = j; } array[start] = temp; }
归并排序
归并排序是复杂排序中唯一一个稳定排序,通过将待排序数组进行分拆再合并来进行排序,归并排序时间复杂度为n的平方,代码如下:
//source源数组 //dest目标数组 //s起始下标 //t目标下标 function mSort(source, dest, s, t) { var m; //取中间值 var dest2 = new Array(); if (s == t) { dest[s] = source[s]; } else { m = Math.floor((s + t) / 2); mSort(source, dest2, s, m); mSort(source, dest2, m+1 , t); merge(dest2, dest, s, m, t); /* 输出结果 */ document.write("<br />第 + ++count + "遍排序的结果是:") for (var n = 0; n < dest.length; n++) { document.write(array[n] + ","); } /* 输出结果结束 */ } } //将两个数组按照从小到大的顺序融合 //source原数组 //dest排序后的数组 //s第一个下标 //m第二个数组下标 //总长度 function merge(source, dest, s, m, n) { for (var j = m+1, k = s; j <= n && s <= m; k++) { if (source[s] < source[j]) { dest[k] = source[s++]; } else { dest[k] = source[j++]; } } //将剩余排不完的有序数组加入到dest的末端 if (s <= m) { for (var l = 0; l <= m - s; l++) { dest[k + l] = source[s+l]; } } if (j <= n) { for (var l = 0; l <= n - j; l++) { dest[k + l] = source[j+l]; } } }
快速排序
快速排序是目前已知的速度最快的排序,时间复杂度为nlogn,代码如下:
var count = 0; function quickSort(array, low, high) { var temp; if (low < high) { var keypoint = QuickSortHelp(array, low, high); count++; document.write("<br />第台? + count + "遍括?排?序ò的?结á果?是?:") for (var l = 0; l < array.length; l++) { document.write(array[l] + ","); } quickSort(array, low, keypoint - 1); quickSort(array, keypoint + 1, high); } } function QuickSortHelp(array, low, high) { while (low < high) { while (low < high && array[low] <= array[high]) { high--; } temp = array[low]; array[low] = array[high]; array[high] = temp; while (low < high && array[low] <= array[high]) { low++ } temp = array[low]; array[low] = array[high]; array[high] = temp; } return low; }
以上这篇数据结构中的各种排序方法小结(JS实现)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。
更多面试题总结请看:【面试题】技术面试题汇总 基数排序:$r$ 代表关键字的基数,比如对十进制数字的 $r == 10$;$d$ 代表位数,比如 [0~999] 范围内的数字的 $d == 3$。 桶排序:$m$ 代表桶的个数。 稳定的排序算法:冒泡排序、归并排序、基数排序、直接插入排序、桶排序。 不稳定的排序算法:快速排序、堆排序、直接选择排序、希尔排序。 O(nlogn) 的排序算法:快速排序
本文向大家介绍js的各种排序算法实现(总结),包括了js的各种排序算法实现(总结)的使用技巧和注意事项,需要的朋友参考一下 如下所示: 以上这篇js的各种排序算法实现(总结)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。
本文向大家介绍详细总结各种排序算法(Java实现),包括了详细总结各种排序算法(Java实现)的使用技巧和注意事项,需要的朋友参考一下 一、插入类排序 1.直接插入排序 思想:将第i个插入到前i-1个中的适当位置 时间复杂度:T(n) = O(n²)。 空间复杂度:S(n) = O(1)。 稳定性:稳定排序。 如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。 所以,相等
本文向大家介绍C++ 数据结构 堆排序的实现,包括了C++ 数据结构 堆排序的实现的使用技巧和注意事项,需要的朋友参考一下 堆排序(heapsort)是一种比较快速的排序方式,它的时间复杂度为O(nlgn),并且堆排序具有空间原址性,任何时候只需要有限的空间来存储临时数据。我将用c++实现一个堆来简单分析一下。 堆排序的基本思想为: 1、升序排列,保持大堆;降序排列,保持小堆; 2、建立堆之后,将
排序算法的评价 稳定性 稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串行中R出现在S之前,在排序过的串行中R也将会是在S之前。 计算复杂度(最差、平均、和最好表现) 依据串行(list)的大小(n),一般而言,好的表现是O(nlogn),且坏的行为是O(n2)。对于一个排序理想的表现是O(n)。仅使用一个
本文向大家介绍php中各种定义变量的方法小结,包括了php中各种定义变量的方法小结的使用技巧和注意事项,需要的朋友参考一下 1.定义常量define("CONSTANT", "Hello world."); 常量只能包含标量数据(boolean,integer,float 和 string)。 调用常量时,只需要简单的用名称取得常量的值,而不能加“$”符号,如:echo CONSTANT; 注: