前面两讲《C++11 并发指南二(std::thread 详解) 》,《C++11 并发指南三(std::mutex 详解) 》分别介绍了 std::thread 和 std::mutex,相信读者对 C++11 中的多线程编程有了一个最基本的认识,本文将介绍 C++11 标准中 <future> 头文件里面的类和相关函数。
<future> 头文件中包含了以下几个类和函数:
std::promise 类介绍
promise 对象可以保存某一类型 T 的值,该值可被 future 对象读取(可能在另外一个线程中),因此 promise 也提供了一种线程同步的手段。在 promise 对象构造时可以和一个共享状态(通常是std::future)相关联,并可以在相关联的共享状态(std::future)上保存一个类型为 T 的值。
可以通过 get_future 来获取与该 promise 对象相关联的 future 对象,调用该函数之后,两个对象共享相同的共享状态(shared state)
下面以一个简单的例子来说明上述关系
#include <iostream> // std::cout #include <functional> // std::ref #include <thread> // std::thread #include <future> // std::promise, std::future void print_int(std::future<int>& fut) { int x = fut.get(); // 获取共享状态的值. std::cout << "value: " << x << '\n'; // 打印 value: 10. } int main () { std::promise<int> prom; // 生成一个 std::promise<int> 对象. std::future<int> fut = prom.get_future(); // 和 future 关联. std::thread t(print_int, std::ref(fut)); // 将 future 交给另外一个线程t. prom.set_value(10); // 设置共享状态的值, 此处和线程t保持同步. t.join(); return 0; }
std::promise 构造函数
default (1) | promise(); |
---|---|
with allocator (2) | template <class Alloc> promise (allocator_arg_t aa, const Alloc& alloc); |
copy [deleted] (3) | promise (const promise&) = delete; |
move (4) | promise (promise&& x) noexcept; |
另外,std::promise 的 operator= 没有拷贝语义,即 std::promise 普通的赋值操作被禁用,operator= 只有 move 语义,所以 std::promise 对象是禁止拷贝的。
例子:
#include <iostream> // std::cout #include <thread> // std::thread #include <future> // std::promise, std::future std::promise<int> prom; void print_global_promise () { std::future<int> fut = prom.get_future(); int x = fut.get(); std::cout << "value: " << x << '\n'; } int main () { std::thread th1(print_global_promise); prom.set_value(10); th1.join(); prom = std::promise<int>(); // prom 被move赋值为一个新的 promise 对象. std::thread th2 (print_global_promise); prom.set_value (20); th2.join(); return 0; }
std::promise::get_future 介绍
该函数返回一个与 promise 共享状态相关联的 future 。返回的 future 对象可以访问由 promise 对象设置在共享状态上的值或者某个异常对象。只能从 promise 共享状态获取一个 future 对象。在调用该函数之后,promise 对象通常会在某个时间点准备好(设置一个值或者一个异常对象),如果不设置值或者异常,promise 对象在析构时会自动地设置一个 future_error 异常(broken_promise)来设置其自身的准备状态。上面的例子中已经提到了 get_future,此处不再重复。
std::promise::set_value 介绍
generic template (1) | void set_value (const T& val); void set_value (T&& val); |
---|---|
specializations (2) | void promise<R&>::set_value (R& val); // when T is a reference type (R&) void promise<void>::set_value (void); // when T is void |
设置共享状态的值,此后 promise 的共享状态标志变为 ready.
std::promise::set_exception 介绍
为 promise 设置异常,此后 promise 的共享状态变标志变为 ready,例子如下,线程1从终端接收一个整数,线程2将该整数打印出来,如果线程1接收一个非整数,则为 promise 设置一个异常(failbit) ,线程2 在std::future::get 是抛出该异常。
#include <iostream> // std::cin, std::cout, std::ios #include <functional> // std::ref #include <thread> // std::thread #include <future> // std::promise, std::future #include <exception> // std::exception, std::current_exception void get_int(std::promise<int>& prom) { int x; std::cout << "Please, enter an integer value: "; std::cin.exceptions (std::ios::failbit); // throw on failbit try { std::cin >> x; // sets failbit if input is not int prom.set_value(x); } catch (std::exception&) { prom.set_exception(std::current_exception()); } } void print_int(std::future<int>& fut) { try { int x = fut.get(); std::cout << "value: " << x << '\n'; } catch (std::exception& e) { std::cout << "[exception caught: " << e.what() << "]\n"; } } int main () { std::promise<int> prom; std::future<int> fut = prom.get_future(); std::thread th1(get_int, std::ref(prom)); std::thread th2(print_int, std::ref(fut)); th1.join(); th2.join(); return 0; }
std::promise::set_value_at_thread_exit 介绍
设置共享状态的值,但是不将共享状态的标志设置为 ready,当线程退出时该 promise 对象会自动设置为 ready。如果某个 std::future 对象与该 promise 对象的共享状态相关联,并且该 future 正在调用 get,则调用 get 的线程会被阻塞,当线程退出时,调用 future::get 的线程解除阻塞,同时 get 返回 set_value_at_thread_exit 所设置的值。注意,该函数已经设置了 promise 共享状态的值,如果在线程结束之前有其他设置或者修改共享状态的值的操作,则会抛出 future_error( promise_already_satisfied )。
std::promise::swap 介绍
交换 promise 的共享状态。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
在C 03中,我使用了带有自建线程池的pthon,它总是保持几个线程运行(因为很慢),这样我就可以为小任务启动线程,而无需考虑性能问题。 现在,在C11中,我们有d::线程。我想标准没有说明具体的实现,所以我的问题是关于标准库实现的。他们通常选择构建s很便宜的池方法(例如,在posx上不调用),还是只是一个包装器? 换句话说,在C11中仍然推荐线程池,或者我应该在需要时创建一个,并将性能留给标准库
并行开发挺复杂的,特别是在试图用好线程和锁的过程中。如果要用到条件变量或std-atomics(一种无锁开发方式),那就更复杂了。C++0x提供了future和promise来简化任务线程间的返回值操作;同时为启动任务线程提供了packaged_task以方便操作。其中的关键点是允许2个任务间使用无(显式)锁的方式进行值传递;标准库帮你高效的做好这些了。基本思路很简单:当一个任务需要向父线程(启动
在设计回调函数的时候,无可避免地会接触到可回调对象。在C++11中,提供了std::function和std::bind两个方法来对可回调对象进行统一和封装。 可调用对象 C++中有如下几种可调用对象:函数、函数指针、lambda表达式、bind对象、函数对象。其中,lambda表达式和bind对象是C++11标准中提出的(bind机制并不是新标准中首次提出,而是对旧版本中bind1st和bind
本文向大家介绍C++11中std::future的具体使用方法,包括了C++11中std::future的具体使用方法的使用技巧和注意事项,需要的朋友参考一下 C++11中的std::future是一个模板类。std::future提供了一种用于访问异步操作结果的机制。std::future所引用的共享状态不能与任何其它异步返回的对象共享(与std::shared_future相反)( std::
当学习C++的时候,数组是最基本的结构之一,通常通过以下的方式来定义: int a[5]; int *b = new int[5]; 上面一句是在栈上定义了一个长度为5的数组,下面一句是在堆上定义了一个长度为5的数组,并用一个指针指向它。 在C++11中,引入了一种新的数组定义方式std::array。 std::array的特性 std::array是具有固定大小的数组。因此,它并不支持添加或
本文向大家介绍C++11 并发指南之std::mutex详解,包括了C++11 并发指南之std::mutex详解的使用技巧和注意事项,需要的朋友参考一下 上一篇《C++11 并发指南二(std::thread 详解) 》中主要讲到了 std::thread 的一些用法,并给出了两个小例子,本文将介绍 std::mutex 的用法。 Mutex 又称互斥量,C++ 11中与 Mutex 相关的类(