当前位置: 首页 > 编程笔记 >

ReadWriteLock接口及其实现ReentrantReadWriteLock方法

淳于禄
2023-03-14
本文向大家介绍ReadWriteLock接口及其实现ReentrantReadWriteLock方法,包括了ReadWriteLock接口及其实现ReentrantReadWriteLock方法的使用技巧和注意事项,需要的朋友参考一下

Java并发包的locks包里的锁基本上已经介绍得差不多了,ReentrantLock重入锁是个关键,在清楚的了解了同步器AQS的运行机制后,实际上再分析这些锁就会显得容易得多,这章节主讲另外一个重要的锁——ReentrantReadWriteLock读写锁。

ReentrantLock是一个独占锁,也就是说只能由一个线程获取锁,但如果场景是线程只做读的操作呢?这样ReentrantLock就不是很合适,读的线程并不需要保证其线程的安全性,任何一个线程都能去获取锁,只有这样才能尽可能地保证性能和效率。ReentrantReadWriteLock就是这样的一个锁,在其内部分为读锁和写锁,可以有N个读操作线程获取到写锁,但是只能有1个写操作线程获取到写锁,那么可以预见的是写锁是共享锁(AQS中的共享模式),读锁是独占锁(AQS中的独占模式)。首先来看读写锁的接口类:

public interface ReadWriteLock { 
  Lock readLock();  //获取读锁
  Lock writeLock();  //获取写锁
 }

可以看到ReadWriteLock接口只定义了两个方法,获取读锁和获取写锁的方法。下面是ReadWriteLock的实现类——ReentrantReadWriteLock。  

和ReentrantLock类似,ReentrantReadWriteLock在其内部也是通过一个内部类Sync实现同步器AQS,同样也是通过实现Sync实现公平锁和非公平锁,这一点的思路和ReentrantLock类似。在ReadWriteLock接口中获取的读锁和写锁是怎么实现的呢?

//ReentrantReadWriteLock
private final ReentrantReadWriteLock.ReadLock readerLock;
private final ReentrantReadWriteLock.WriteLock writerLock;
final Sync sync;
public ReentrantReadWriteLock(){
 this(false); //默认非公平锁
}
public ReentrantReadWriteLock(boolean fair) {
 sync = fair ? new FairSync() : new NonfairSync(); //锁类型(公平/非公平)
 readerLock = new ReadLock(this); //构造读锁
 writerLock = new WriteLock(this); //构造写锁
}
……
public ReentrantReadWriteLock.WriteLock writeLock0{return writerLock;}
public ReentrantReadWriteLock.ReadLock readLock0{return ReaderLock;}
//ReentrantReadWriteLock$ReadLock
public static class ReadLock implements Lock {
 protected ReadLock(ReentrantReadwritLock lock) {
  sync = lock.sync;  //最后还是通过Sync内部类实现锁
  }
 …… //它实现的是Lock接口,其余的实现可以和ReentrantLock作对比,获取锁、释放锁等等
}
//ReentrantReadWriteLock$WriteLock
public static class WriteLock implemnts Lock {
 protected WriteLock(ReentrantReadWriteLock lock) {
  sync = lock.sync;
  }
…… //它实现的是Lock接口,其余的实现可以和ReentrantLock作对比,获取锁、释放锁等等
}

上面是对ReentrantReadWriteLock做了一个大致的介绍,可以看到在其内部有好几个内部类,实际上读写锁内有两个锁——ReadLock、WriteLock,这两个锁都是实现自Lock接口,可以和ReentrantLock对比,而这两个锁的内部实现则是通过Sync,也就是同步器AQS实现的,这也可以和ReentrantLock中的Sync对比。
  回顾一下AQS,其内部有两个重要的数据结构——一个是同步队列、一个则是同步状态,这个同步状态应用到读写锁中也就是读写状态,但AQS中只有一个state整型来表示同步状态,读写锁中则有读、写两个同步状态需要记录。所以,读写锁将AQS中的state整型做了一下处理,它是一个int型变量一共4个字节32位,那么可以读写状态就可以各占16位——高16位表示读,低16位表示写。

  

现在有一个疑问如果state的值位5,二进制为(00000000000000000000000000000101),如何快速确定读和写各自的状态呢?这就要用到位移运算了。计算方式为:写状态state & 0x0000FFFF,读状态state >>> 16。写状态增加1等于state + 1,读状态增加1等于state + (1 << 16)。有关移位运算可以参考《<<、>>、>>>移位操作》。

写锁的获取与释放

根据我们之前的经验可以得知:AQS已经将获取锁的算法骨架搭好了,只需子类实现tryAcquire(独占锁),故我们只需查看tryAcquire。

//ReentrantReadWriteLock$Sync
protected final boolean tryAcquire(int acquires) {
 Thread current = Thread.currentThread;
 int c = getState(); //获取state状态
 int w = exclusiveCount(c); //获取写状态,即 state & 0x00001111
 if (c != 0) { //存在同步状态(读或写),作下一步判断
  if (w == 0 || current != getExclusiveOwnerThread())  //写状态为0,但同步状态不为0表示有读状态,此时获取锁失败,或者当前已经有其他写线程获取了锁此时也获取锁失败
   return false;
  if (w + exclusiveCount(acquire) > MAX_COUNT) //锁重入是否超过限制
   throw new Error(“Maxium lock count exceeded”);
  setState(c + acquire); //记录锁状态
  return true;
  }
  if (writerShouldBlock() || !compareAndSetState(c, c + acquires))
   return false;  //writerShouldBlock对于非公平锁总是返回false,对于公平锁则判断同步队列中是否有前驱节点
  setExclusiveOwnerThread(current);
  return true;
}

上面是写锁的状态获取,不好理解的是writerShouldBlock方法,此方法上面有描述,非公平锁直接返回false,而对于公平锁则是调用hasQueuedPredecessors方法如下:

 //ReentrantReadWriteLock$FairSync
 final boolean writerShouldBlock() {
  return hasQueuedPredecessors();
 }

原因是为什么呢?这就要回到非公平锁和公平锁的区别上来了,简单回顾一下,详情可参考《5.Lock接口及其实现ReentrantLock》。对于非公平锁,每次线程获取锁时首先会强行进行锁获取操作而不管同步队列中是否有线程,当获取不到时才会将线程构造至队尾;对于公平锁来讲,只要同步队列中存在线程,就不会去获取锁,而是将线程构造添加至队尾。所以重新回到写状态的获取上,tryAcquire方法里,前面发现没有线程持有锁,但是此时会根据锁的不同做相应操作,对于非公平锁——抢锁,对公平锁——同步队列中有线程,不抢锁,添加至队尾排队。

写锁的释放与ReentrantLock的释放过程基本类似,毕竟都是独占锁,每次释放减少写的状态,直到减小到0就表示写锁已经完全释放。

读锁的获取与释放

同理,根据我们之前的经验可以得知:AQS已经将获取锁的算法骨架搭好了,只需子类实现tryAcquireShared(共享锁),故我们只需查看tryAcquireShared。我们知道对于共享模式下的锁,它能够被多个线程同时获取,现在问题来了,T1线程获取了锁,同步状态state=1,此时T2也获取了锁,state=2,接着T1线程重入state=3,也就是说读状态是所有线程读锁次数的总和,而每个线程各自获取读锁的次数只能选择保存在ThreadLock中,由线程自身维护,所以在这个地方要做一些复杂处理,源码有点长,但复杂就在于每个线程保存自身获取读锁的次数,具体参照源码的tryAcquireShared,仔细阅读并结合上面对写锁获取的分析不难读懂。

读锁的释放值得注意的地方在于自身维护的获取锁的次数,以及通过移位操作减少状态state – (1 << 16)。

以上这篇ReadWriteLock接口及其实现ReentrantReadWriteLock方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。

 类似资料:
  • 主要内容:锁方法,示例接口允许一次读取多个线程,但一次只能写入一个线程。 读锁 - 如果没有线程锁定进行写入,则多线程可以访问读锁。 写锁 - 如果没有线程正在读或写,那么一个线程可以访问写锁。 锁方法 以下是类中可用的重要方法的列表。 编号 方法 描述 1 返回用于读的锁。 2 返回用于写的锁。 示例 以下程序演示了接口的这些方法。这里我们使用获取读锁定和来获取写锁定。 这将产生以下结果,如下所示 -

  • 问题内容: 在Java中,当接口扩展另一个接口时: 为什么要实现其方法? 当接口不能包含方法主体时,如何实现其方法 当扩展另一个接口而不实现它时,如何实现这些方法? 接口实现另一个接口的目的是什么? 这是Java的主要概念! 编辑: 在eclipse中,除了中的实现方法之外,还有实现符号。 当我将鼠标悬停在它上面时,它表示它实现了该方法!!! 问题答案: 为什么要实现其方法?当接口不能包含方法主体

  • Override Method可以实现接口方法也可以覆写父类的方法,但Implement Methods只能实现接口方法 操作步骤: 菜单栏: Code —> Implement Methods 快捷键: Mac: control + L Windows\/Linux: Ctrl + I

  • 问题内容: 我有一个定义方法的接口。我有一个 实现 此接口的结构。在其中,我已经从该接口实现了方法,并且还定义了其他方法。 例如: 在操场上:https : //play.golang.org/p/B1GgoNToNl_l 在此,WagTail()不是Animal接口的一部分,但属于Dog结构。运行此代码会出现错误 dog.WagTail未定义(动物类型没有字段或方法WagTail)。 有没有一种

  • 本文向大家介绍PHP接口继承及接口多继承原理与实现方法详解,包括了PHP接口继承及接口多继承原理与实现方法详解的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了PHP接口继承及接口多继承原理与实现方法。分享给大家供大家参考,具体如下: 在PHP的接口中,接口可以继承接口。虽然PHP类只能继承一个父类(单继承),但是接口和类不同,接口可以实现多继承,可以继承一个或者多个接口。当然接口的继承也是

  • 前面章节介绍了Canvas2D,同时也介绍了在canvas中同样也可以绘制3D图形,也就是Canvas3D或者称为WebGL。同Canvas2D不一样的是,WebGL标准草案不是由W3C来起草的,而是Khronos组织来负责的,目前很多浏览器支持WebGL,例如Firefox, Chrome, Safari(仅限Mac平台)和Opera 。但是,微软以安全性为由拒绝在IE中支持WebGL,虽然它支