基本思想:从未排序的序列中找到一个最小的元素,放到第一位,再从剩余未排序的序列中找到最小的元素,放到第二位,依此类推,直到所有元素都已排序完毕。假设序列元素总共n+1个,则我们需要找n轮,就可以使该序列排好序。在每轮中,我们可以这样做:用未排序序列的第一个元素和后续的元素依次相比较,如果后续元素小,则后续元素和第一个元素交换位置放到,这样一轮后,排在第一位的一定是最小的。这样进行n轮,就可排序。
原理图
图1:
图2:
初始数据不敏感,不管初始的数据有没有排好序,都需要经历N2/2次比较,这对于一些原本排好序,或者近似排好序的序列来说并不具有优势。在最好的情况下,即所有的排好序,需要0次交换,最差的情况,倒序,需要N-1次交换。
数据交换的次数较少,如果某个元素位于正确的最终位置上,则它不会被移动。在最差情况下也只需要进行N-1次数据交换,在所有的完全依靠交换去移动元素的排序方法中,选择排序属于比较好的一种。
python代码实现:
def sort_choice(numbers, max_to_min=True): """ 我这没有按照标准的选择排序,假设列表长度为n,思路如下: 1、获取最大值x,将x移动到列最后。[n1, n2, n3, ... nn] 2、将x追加到排序结果[n1, n3, ... nn, n2] 3、获取排序后n-1个元素[n1, n3, ... nn],重复第一步,重复n-1次。 max_to_min是指从大到小排序,默认为true;否则从小到大排序。 对[8, 4, 1, 0, 9]排序,大致流程如下: sorted_numbers = [] [8, 4, 1, 0, 9], sorted_numbers = [9] [4, 1, 0, 8], sorted_numbers = [9, 8] [1, 0, 4], sorted_numbers = [9, 8, 4] [0, 1], sorted_numbers = [9, 8, 4, 1] [0], sorted_numbers = [9, 8, 4, 1, 0] """ if len(numbers) <= 1: return numbers sorted_html" target="_blank">list = [] index = 0 for i in xrange(len(numbers) - index): left_numbers = _get_left_numbers(numbers, max_to_min) numbers = left_numbers[:-1] sorted_list.append(left_numbers[-1]) index += 1 return sorted_list def _get_left_numbers(numbers, get_max=True): ''' 获取最大值或者最小值x,并且将x抽取出来,置于列表最后. Ex: get_max=True, [1, 4, 3] ⇒ [1, 3, 4] get_max=False, [1, 4, 3] ⇒ [4, 3 ,1] ''' max_index = 0 for i, num in enumerate(numbers): if get_max: if num > numbers[max_index]: max_index = i else: if num < numbers[max_index]: max_index = i numbers = numbers[:max_index] + numbers[max_index + 1:] + [numbers[max_index]] return numbers
测试一下:
>>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=True) [0, 4, 0, 31, 9, 19, 67, 89] >>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=False) [4, 0, 31, 9, 19, 89, 67, 0] >>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=False) [0, 0, 4, 9, 19, 31, 67, 89] >>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=True) [89, 67, 31, 19, 9, 4, 0, 0]
本文向大家介绍Python实现的选择排序算法示例,包括了Python实现的选择排序算法示例的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Python实现的选择排序算法。分享给大家供大家参考,具体如下: 选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。
本文向大家介绍简单讲解奇偶排序算法及在Java数组中的实现,包括了简单讲解奇偶排序算法及在Java数组中的实现的使用技巧和注意事项,需要的朋友参考一下 奇偶排序是一个比较有个性的排序,基本思路是奇数列排一趟序,偶数列排一趟序,再奇数排,再偶数排,直到全部有序 举例吧, 待排数组 第一次比较奇数列,奇数列与它的邻居偶数列比较,如6和2比,4和1比,5和9比 交换后变成 第二次比较偶数列,即6和1比,
本文向大家介绍C语言 选择排序算法详解及实现代码,包括了C语言 选择排序算法详解及实现代码的使用技巧和注意事项,需要的朋友参考一下 选择排序是排序算法的一种,这里以从小到大排序为例进行讲解。 基本思想及举例说明 选择排序(从小到大)的基本思想是,首先,选出最小的数,放在第一个位置;然后,选出第二小的数,放在第二个位置;以此类推,直到所有的数从小到大排序。 在实现上,我们通常是先确定第i小的数所在的
本文向大家介绍python选择排序算法实例总结,包括了python选择排序算法实例总结的使用技巧和注意事项,需要的朋友参考一下 本文实例总结了python选择排序算法。分享给大家供大家参考。具体如下: 代码1: 代码2: 代码3 希望本文所述对大家的Python程序设计有所帮助。
本文向大家介绍请你讲讲LRU算法的实现原理?相关面试题,主要包含被问及请你讲讲LRU算法的实现原理?时的应答技巧和注意事项,需要的朋友参考一下 考察点:LRU算法 ①LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也很高”,反过来说“如果数据最近这段时间一直都没有访问,那么将来被访问
本文向大家介绍请你讲讲LFU算法的实现原理?相关面试题,主要包含被问及请你讲讲LFU算法的实现原理?时的应答技巧和注意事项,需要的朋友参考一下 考察点:LFU Cache