错误思想
举个列子,当我们想要比较 一个 类型为 RDD[(Long, (String, Int))] 的RDD,让它先按Long分组,然后按int的值进行倒序排序,最容易想到的思维就是先分组,然后把Iterable 转换为 list,然后sortby,但是这样却有一个致命的缺点,就是Iterable 在内存中是一个指针,不占内存,而list是一个容器,占用内存,如果Iterable 含有元素过多,那么极易引起OOM
val cidAndSidCountGrouped: RDD[(Long, Iterable[(String, Int)])] = cidAndSidCount.groupByKey() // 4. 排序, 取top10 val result: RDD[(Long, List[(String, Int)])] = cidAndSidCountGrouped.map { case (cid, sidCountIt) => // sidCountIt 排序, 取前10 // Iterable转成容器式集合的时候, 如果数据量过大, 极有可能导致oom (cid, sidCountIt.toList.sortBy(-_._2).take(5)) }
首先,我们要知道,RDD 的排序需要 shuffle, 是采用了内存+磁盘来完成的排序.这样能有效避免OOM的风险,但是RDD是全部排序,所以需要针对性的过滤Key值来进行排序
方法一 利用RDD排序特点
//把long(即key值)提取出来 val cids: List[Long] = categoryCountList.map(_.cid.toLong) val buffer: ListBuffer[(Long, List[(String, Int)])] = ListBuffer[(Long, List[(String, Int)])]() //根据每个key来过滤RDD for (cid <- cids) { /* List((15,(632972a4-f811-4000-b920-dc12ea803a41,10)), (15,(f34878b8-1784-4d81-a4d1-0c93ce53e942,8)), (15,(5e3545a0-1521-4ad6-91fe-e792c20c46da,8)), (15,(66a421b0-839d-49ae-a386-5fa3ed75226f,8)), (15,(9fa653ec-5a22-4938-83c5-21521d083cd0,8))) 目标: (9,List((199f8e1d-db1a-4174-b0c2-ef095aaef3ee,9), (329b966c-d61b-46ad-949a-7e37142d384a,8), (5e3545a0-1521-4ad6-91fe-e792c20c46da,8), (e306c00b-a6c5-44c2-9c77-15e919340324,7), (bed60a57-3f81-4616-9e8b-067445695a77,7))) */ val arr: Array[(String, Int)] = cidAndSidCount.filter(cid == _._1) .sortBy(-_._2._2) .take(5) .map(_._2) buffer += ((cid, arr.toList)) } buffer.foreach(println)
这样做也有缺点:即有多少个key,就有多少个Job,占用资源
方法二 利用TreeSet自动排序特性
def statCategoryTop10Session_3(sc: SparkContext, categoryCountList: List[CategroyCount], userVisitActionRDD: RDD[UserVisitAction]) = { // 1. 过滤出来 top10品类的所有点击记录 // 1.1 先map出来top10的品类id val cids = categoryCountList.map(_.cid.toLong) val topCategoryActionRDD: RDD[UserVisitAction] = userVisitActionRDD.filter(action => cids.contains(action.click_category_id)) // 2. 计算每个品类 下的每个session 的点击量 rdd ((cid, sid) ,1) val cidAndSidCount: RDD[(Long, (String, Int))] = topCategoryActionRDD .map(action => ((action.click_category_id, action.session_id), 1)) // 使用自定义分区器 重点理解分区器的原理 .reduceByKey(new CategoryPartitioner(cids), _ + _) .map { case ((cid, sid), count) => (cid, (sid, count)) } // 3. 排序取top10 //因为已经按key分好了区,所以用Mappartitions ,在每个分区中新建一个TreeSet即可 val result: RDD[(Long, List[SessionInfo])] = cidAndSidCount.mapPartitions((it: Iterator[(Long, (String, Int))]) => { //new 一个TreeSet,并同时指定排序规则 var treeSet: mutable.TreeSet[CategorySession] = new mutable.TreeSet[CategorySession]()(new Ordering[CategorySession] { override def compare(x: CategorySession, y: CategorySession): Int = { if (x.clickCount >= y.clickCount) -1 else 1 } }) var id = 0l iter.foreach({ case (l, session) => { id = l treeSet.add(session) if (treeSet.size > 10) treeSet = treeSet.take(10) } }) Iterator(id, treeSet) }) result.collect.foreach(println) Thread.sleep(1000000) } } /* 根据传入的key值来决定分区号,让相同key进入相同的分区,能够避免多次shuffle */ class CategoryPartitioner(cids: List[Long]) extends Partitioner { // 用cid索引, 作为将来他的分区索引. private val cidWithIndex: Map[Long, Int] = cids.zipWithIndex.toMap // 返回集合的长度 override def numPartitions: Int = cids.length // 根据key返回分区的索引 override def getPartition(key: Any): Int = { key match { // 根据品类id返回分区的索引! 0-9 case (cid: Long, _) => cidWithIndex(cid) } } }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
问题链接1链接2链接3 从上面的链接,我希望我遵循的答案是被接受的。但我还是有例外。我正在使用Java 6。 代码: 堆栈跟踪:
我有一个Spring批处理作业,它从DB读取并写入CSV。批处理作业正在尝试使用我正在从中读取的数据库来保存批处理的状态。我不希望这种事发生。我正在使用Spring4。 经过大量的搜索,我尝试了两种方法,但都失败了。 方法1: null 我得到的例外情况如下。虽然例外并不是一个节目停止,我想摆脱它。 错误日志:
我们有一个基于微服务的系统,其中一个专用服务对MySQL执行所有与数据库相关的调用(db reader)。 在对< code>db-reader服务的其他服务中不时出现断路错误。 我们发现在此期间发生了Hikari池连接关闭/打开操作。 08:39:25.312 2022-03-28 08:39:25,311 [HikariPool-19 连接关闭] DEBUG com.zaxxer.hikari
我正在开发一个windows应用程序,它以600Hz的频率从传感器接收数据。在五分之二的情况下,我的IO线程成功地从传感器读取4字节的数据,并将其传递给GUI线程。 问题是五次中有三次,QSerialPort有无法解释的超时,其中QSerialPort的waitForReadyRead()返回false和serial。errorString()有超时错误。在这种情况下,它将永远不会读取数据。如果我
问题内容: 根据python的GIL,我们不能在CPU绑定的进程中使用线程,所以我的问题是Apache Spark如何在多核环境中利用python? 问题答案: 多线程python问题与Apache Spark内部结构分开。Spark上的并行性在JVM内部处理。 原因是在Python驱动程序中,使用Py4J启动JVM并创建JavaSparkContext。 Py4J仅在驱动程序上用于Python和