什么是生产者消费者模型
在 工作中,大家可能会碰到这样一种情况:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是广义的,可以是类、函数、线程、html" target="_blank">进程等)。产 生数据的模块,就形象地称为生产者;而处理数据的模块,就称为消费者。在生产者与消费者之间在加个缓冲区,我们形象的称之为仓库,生产者负责往仓库了进商 品,而消费者负责从仓库里拿商品,这就构成了生产者消费者模型。结构图如下:
生产者消费者模型的优点:
1、解耦
假设生产者和消费者分别是两个类。如果让生产者直接调用消费者的某个方法,那么生产者对于消费者就会产生依赖(也就是耦合)。将来如果消费者的代码发生变化, 可能会影响到生产者。而如果两者都依赖于某个缓冲区,两者之间不直接依赖,耦合也就相应降低了。
举个例子,我们去邮局投递信件,如果不使用邮筒(也就是缓冲区),你必须得把信直接交给邮递员。有同学会说,直接给邮递员不是挺简单的嘛?其实不简单,你必须 得认识谁是邮递员,才能把信给他(光凭身上穿的制服,万一有人假冒,就惨了)。这就产生和你和邮递员之间的依赖(相当于生产者和消费者的强耦合)。万一哪天邮递员换人了,你还要重新认识一下(相当于消费者变化导致修改生产者代码)。而邮筒相对来说比较固定,你依赖它的成本就比较低(相当于和缓冲区之间的弱耦合)。
2、支持并发
由于生产者与消费者是两个独立的并发体,他们之间是用缓冲区作为桥梁连接,生产者只需要往缓冲区里丢数据,就可以继续生产下一个数据,而消费者只需要从缓冲区了拿数据即可,这样就不会因为彼此的处理速度而发生阻塞。
接上面的例子,如果我们不使用邮筒,我们就得在邮局等邮递员,直到他回来,我们把信件交给他,这期间我们啥事儿都不能干(也就是生产者阻塞),或者邮递员得挨家挨户问,谁要寄信(相当于消费者轮询)。
3、支持忙闲不均
缓冲区还有另一个好处。如果制造数据的速度时快时慢,缓冲区的好处就体现出来了。当数据制造快的时候,消费者来不及处理,未处理的数据可以暂时存在缓冲区中。 等生产者的制造速度慢下来,消费者再慢慢处理掉。
为了充分复用,我们再拿寄信的例子来说事。假设邮递员一次只能带走1000封信。万一某次碰上情人节(也可能是圣诞节)送贺卡,需要寄出去的信超过1000封,这时 候邮筒这个缓冲区就派上用场了。邮递员把来不及带走的信暂存在邮筒中,等下次过来 时再拿走。
Python示例:
利用队列实现简单的生产者消费者模型,生产者产生时间放入队列,消费者取出时间打印
class Consumer(threading.Thread): def __init__(self, queue): threading.Thread.__init__(self) self._queue = queue def run(self): while True: msg = self._queue.get() if isinstance(msg, str) and msg == 'quit': break print "I'm a thread, and I received %s!!" % msg print 'Bye byes!' def producer(): queue = Queue.Queue() worker = Consumer(queue) worker.start() # 开启消费者线程 start_time = time.time() while time.time() - start_time < 5: queue.put('something at %s' % time.time()) time.sleep(1) queue.put('quit') worker.join() if __name__ == '__main__': producer()
使用多线程,在做爬虫的时候,生产者用着产生url链接,消费者用于获取url数据,在队列的帮助下可以使用多线程加快爬虫速度。
import time import threading import Queue import urllib2 class Consumer(threading.Thread): def __init__(self, queue): threading.Thread.__init__(self) self._queue = queue def run(self): while True: content = self._queue.get() print content if isinstance(content, str) and content == 'quit': break response = urllib2.urlopen(content) print 'Bye byes!' def Producer(): urls = [ 'http://211.103.242.133:8080/Disease/Details.aspx?id=2258', 'http://211.103.242.133:8080/Disease/Details.aspx?id=2258', 'http://211.103.242.133:8080/Disease/Details.aspx?id=2258', 'http://211.103.242.133:8080/Disease/Details.aspx?id=2258' ] queue = Queue.Queue() worker_threads = build_worker_pool(queue, 4) start_time = time.time() for url in urls: queue.put(url) for worker in worker_threads: queue.put('quit') for worker in worker_threads: worker.join() print 'Done! Time taken: {}'.format(time.time() - start_time) def build_worker_pool(queue, size): workers = [] for _ in range(size): worker = Consumer(queue) worker.start() workers.append(worker) return workers if __name__ == '__main__': Producer()
生产者线程与消费者线程使用信号量同步 生产者线程与消费者线程使用信号量同步 源码/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2018-08-24 yangjie the f
本文向大家介绍Python semaphore evevt生产者消费者模型原理解析,包括了Python semaphore evevt生产者消费者模型原理解析的使用技巧和注意事项,需要的朋友参考一下 线程锁相当于同时只能有一个线程申请锁,有的场景无数据修改互斥要求可以同时让多个线程同时运行,且需要限制并发线程数量时可以使用信号量 两个或者多个线程需要交互时,且一个进程需要根据另一线程状态执行对应操
本文向大家介绍详解Python 模拟实现生产者消费者模式的实例,包括了详解Python 模拟实现生产者消费者模式的实例的使用技巧和注意事项,需要的朋友参考一下 详解Python 模拟实现生产者消费者模式的实例 散仙使用python3.4模拟实现的一个生产者与消费者的例子,用到的知识有线程,队列,循环等,源码如下: Python代码 在本例里面散仙启动了1个生产者线程,2个消费者线程,打印效果如下:
本文向大家介绍Java实现简易生产者消费者模型过程解析,包括了Java实现简易生产者消费者模型过程解析的使用技巧和注意事项,需要的朋友参考一下 一、概述 一共两个线程,一个线程生产产品,一个线程消费产品,使用同步代码块方法,同步两个线程。当产品没有时,通知生产者生产,生产者生产后,通知消费者消费,并等待消费者消费完。 需要注意的是,有可能出现,停止生产产品后,消费者还没未来得及消费生产者生产的最后
我有一个生产者/消费者模式,如下所示 固定数量的生成器线程,每个线程写入它们自己的BlockingQueue,通过执行器调用 单个使用者线程,读取生产者线程 每个生产者都在运行一个数据库查询,并将结果写入其队列。消费者轮询所有生产者队列。目前,如果出现数据库错误,生产者线程就会死掉,然后消费者就会永远停留在产品队列中等待更多的结果。 我应该如何构造它来正确处理catch错误?
一、线程间通信的两种方式 1.wait()/notify() Object类中相关的方法有notify方法和wait方法。因为wait和notify方法定义在Object类中,因此会被所有的类所继承。这些方法都是final的,即它们都是不能被重写的,不能通过子类覆写去改变它们的行为。 ①wait()方法: 让当前线程进入等待,并释放锁。 ②wait(long)方法: 让当前线程进入等待,并释放锁,