前言
lambda是表达式,用于创建匿名函数,可以和filter、map、reduce配合使用。
本文环境Python3.7。
一、lambda表达式
lambda 只包含一个语句,用于创建匿名函数。
语法:
lambda [arg1 [,arg2,.....argn]]:expression
arg1 -- 参数,可以有多个
expression -- 表达式
使用例子:
f1 = lambda x : x > 10 print(f1(1)) #输出:False print(f1(11)) #输出:True f2 = lambda x, y: x + y print(f2(1,2)) #输出:3
二、filter() 函数
filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回迭代器对象(Python2是列表),可以使用list()转换为列表。
语法:
filter(function, iterable)
function -- 函数
iterable -- 序列,序列的每个元素作为参数传递给函数进行判断,然后返回 True 或 False,最后将返回 True 的元素放到迭代器对象中。
使用例子:
def isEven(x): return x % 2 == 0 list1 = filter(isEven,[1,2,3,4,5,6]) print(list(list1)) #输出:[2, 4, 6] #可以用lambda list2 = filter(lambda x:x%2==0, [1,2,3,4,5,6]) print(list(list2)) #输出:[2, 4, 6] #也可以用列表推导式 list3 = list(x for x in [1,2,3,4,5,6] if x%2==0) print(list3) #输出:[2, 4, 6]
三、map()函数
map()接收一个函数 f 和一个或多个序列 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 迭代器(Python2是列表) 并返回。
语法:
map(function, iterable, ...)
function -- 函数,如果iterable有多个序列,则function的参数也对应有多个
iterable -- 一个或多个序列
使用例子:
def multi(x): return x * 2 def multi2(x, y): return x * y #参数只有1个序列时 list1 = map(multi,[1,2,3,4,5]) print(list(list1)) #输出:[2, 4, 6, 8, 10] #用lambda改写上面语句 list1_1 = map(lambda x : x*2, [1,2,3,4,5]) print(list(list1_1)) #输出:[2, 4, 6, 8, 10] #参数有2个序列时, list2 = map(multi2,[1,2,3,4,5],[6,7,8,9,10]) print(list(list2)) #对2个列表数据的相同位置元素相乘,输出:[6, 14, 24, 36, 50] #用lambda改写上面语句 list2_1 = map(lambda x,y : x*y, [1,2,3,4,5],[6,7,8,9,10]) print(list(list2_1)) #输出:[6, 14, 24, 36, 50] #当2个序列长度不一致时,结果以2个序列中的最短长度为准 list2_2 = map(lambda x,y : x*y, [1,2,3],[6,7,8,9,10]) print(list(list2_2)) #输出:[6, 14, 24] list2_3 = map(lambda x,y : x*y, [1,2,3,4,5],[6,7,8]) print(list(list2_3)) #输出:[6, 14, 24]
四、reduce()函数
reduce()函数对一个数据集合的所有数据进行操作:用传给 reduce 中的函数 function(必须有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果。
在Python2中reduce()是内置函数,Pytho3移到functools 模块。
语法:
reduce(function, iterable[, initializer])
function -- 函数,有两个参数
iterable -- 可迭代对象
initializer -- 可选,初始参数
使用例子:
from functools import reduce def add(x, y): return x + y def mulit(x, y): return x * y print(reduce(add, [1, 2, 3, 4, 5])) #输出:15 print(reduce(add, [1, 2, 3, 4, 5], 10)) #输出:25 print(reduce(mulit, [1, 2, 3, 4, 5])) #输出:120 print(reduce(mulit, [1, 2, 3, 4, 5], 10)) #输出:1200 print(reduce(lambda x,y:x+y,[1, 2, 3, 4, 5]))#输出:15 print(reduce(lambda x,y:x+y,[1, 2, 3, 4, 5], 10))#输出:25
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
map/reduce/filter 是 Python 中较为常用的内建高阶函数,它们为函数式编程提供了不少便利。 map map 函数的使用形式如下: map(function, sequence) 解释:对 sequence 中的 item 依次执行 function(item),并将结果组成一个 List 返回,也就是: [function(item1), function(item2), f
本文向大家介绍Python内置函数之filter map reduce介绍,包括了Python内置函数之filter map reduce介绍的使用技巧和注意事项,需要的朋友参考一下 Python内置了一些非常有趣、有用的函数,如:filter、map、reduce,都是对一个集合进行处理,filter很容易理解用于过滤,map用于映射,reduce用于归并. 是Python列表方法的三架马车。
本文向大家介绍Python map和reduce函数用法示例,包括了Python map和reduce函数用法示例的使用技巧和注意事项,需要的朋友参考一下 先看map。map()函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回。 举例说明,比如我们有一个函数a(x)=x*2,要把这个函数作用在一个list [1, 2, 3, 4,
本文向大家介绍Python中的map()函数和reduce()函数的用法,包括了Python中的map()函数和reduce()函数的用法的使用技巧和注意事项,需要的朋友参考一下 Python内建了map()和reduce()函数。 如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大
本文向大家介绍简单了解python filter、map、reduce的区别,包括了简单了解python filter、map、reduce的区别的使用技巧和注意事项,需要的朋友参考一下 这篇文章主要介绍了简单了解python filter、map、reduce的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 python中有一些非常有趣的函
,和在Python 2中完美工作。这里有一个例子: 但是在Python 3中,我收到以下输出: 如果有人能向我解释这是为什么,我将不胜感激。 为进一步清晰起见,代码截图: