2023.09.06 全程25min 1、自我介绍 2、八股(比较简单) a. 进程和线程的区别 b. 数组和链表的区别 3、项目拷打 面试官很专业,问得很深。 项目一定要吃透。 4、手撕 归并排序
1.自我介绍+项目深挖 2.AUC是什么? 3.学过数字图像处理吗?边缘检测有哪些方法?canny算子具体是怎么做的? 4.不使用深度学习如何检测视频中的运动物体和轨迹? 5.C++内存泄漏是什么?如何避免?static关键字的作用 6.深拷贝和浅拷贝区别,python用什么函数进行深拷贝?
1.自我介绍 2.深挖项目 3.内存泄漏 4.进程 线程的区别 5.残差神经网络 6.反问
7.20 一面 40分钟 1.自我介绍 项目部分: 2.常见模型的结构:bert,TextCNN,transformer,ERNIE 3.怎么比较用哪个模型更好 4.模型输入的长度限制是多少 5.怎么解决多标签问题的 6.attention的时间复杂度是多少 7.有没有做过知识图谱和问答 8.GPT的结构 9.各个类别数据不均衡怎么办? 10.关于模型的部署和优化 11.a,b是两个常数,怎么在不
1自我介绍 2纯问项目 3反问
30分钟电话面 1. 介绍一个项目或竞赛 2. resnet残差,efficienet系列的不同,bn层,最大池化层怎么反向传播的,最优化,一阶二阶的分别有哪些算法,不能求导数的用啥算法 3. 反问 #面试# #海康# #算法工程师#
攒人品!希望多拿offer! 1.自我介绍 2min左右 2.项目经历 20min (这个聊得多) 3.实习经历 20min 4.一些机器学习知识常规问答(LSTM RNN区别啥的)(问传统机器学习做的多不多 但我做的比较少 所以没问了) 5.手撕算法 2个题 一道sql 一道字符串相关 6.反问环节 (比较好奇业务 所以只问了业务 别的也不知道问啥了) 整个过程很舒服,面试体验可以 更新一下 进
投递:11月初 岗位:cv算法工程师 一面:11.21 1.讲解一篇中稿论文和两篇在投论文 2.讲解拼多多的项目 3.写一道leetcode—mid题,原地修改数组 二面:11.23 1.decoder和encoder 2. multi-head机制的实现以及相比于单头的优势是什么,在哪些衡量指标上有提升 3.详细介绍sam模型的内部结构 4.拷打项目和论文 5.leetcode合并链表简单题
9-15 45寒武纪算法二面,一个小姐姐很温柔 项目、实习、CTCLoss,Focal loss ,amp,样本不均衡,深度可分离卷积,模型轻量化啥的 反问:贵公司对人才。。。。 我说完她也笑了 #2023校招#
9.8 投递 9.13 收到AI英语面 9.20 hr问了下预期薪资,通知进入技术面流程 9.22 下午面试官电话约面 9.23 上午9点半、电话面试。(历时约45分钟) 1、个人自我介绍 2、选择一个项目介绍(联邦+ner) 用到的数据 模型效果评测 联邦学习:面对数据非独立同分布怎么做的 实体有哪些标签 用了哪些公开数据集 数据划分(联邦学习) 长实体识别 3、用了哪些图数据库(Neo4j
1. HR面的八股文问题 2. 数据规模和模型复杂度之间的关系,不匹配会发生什么现象?有哪些解决的方法? 3. P问题,NP问题,NPC问题,NPHard问题。 4. 二维矩形排布,如何使得空间利用率最高? #面经#
自我介绍 简历上实习这块(主要是车外) 单阶段检测的框架有了解吗(应该是想听到yolo) 卷积的计算量(讲计算过程) transformer的核心计算过程我是傻逼 transformer和lstm的区别和优势 手写nms和iou计算过程 手写kmeans#虹软科技#
记得前段时间就投了,最近突然找我开始面试。简记一下: 先是自我介绍。自我介绍完了直接开始手撕代码。 第一题是给定mxn的矩阵,0元素所在的行和列上的所有元素置为0,要求空间复杂度尽可能小(最好常数) “做完一个基本m+n空间复杂度的之后,面试官问能不能想出常数级别的” 第二个题是给定整数数组,求连续子序列最大和。 问了我三维项目里,点云采样是怎么做的,怎么确定统一的输入向量。 问了BN训练和测试之
写面经,攒人品,求offer 先说说秋招吧,投了进几百家公司了,至今没有offer,可能是学历不行,也可能是工程能力不足,emmm,总之至今还是 0offer 从9月份就开始投简历了,到了10月底才开始有面试机会,后来改投实习,面试机会才稍微多点 联想研究院实习/10.30 自我介绍 问项目 图像分割有做过吗,没做过,知道别人做过 介绍自己公司,应该是搞理论的,说要在学术界受认可 跟着哪个导师的,
#关于秋招我想说# 论文; networkx的性能问题; loss波动与过拟合的原因分析与处理方法; 数据样本不均衡的处理方法; 向量数据增强的具体做法; 反问; #你的秋招进展怎么样了#