聊项目 PLE里的CGC multihead target attention和din attention 手撕 无重复最长字串 面试官说主要做两个方向,一个是出行组合探索,目前还没上深度,没放量;还有方向就是发券 有点小纠结,不知道去不去 #找实习多的是你不知道的事# #24秋招求职节奏总结# #实习与准备秋招该如何平衡# #正在实习的碎碎念# #实习,投递多份简历没人回复怎么办#
本文向大家介绍Vue.js学习之过滤器详解,包括了Vue.js学习之过滤器详解的使用技巧和注意事项,需要的朋友参考一下 前言 在这个教程中,我们将会通过几个例子,了解和学习VueJs的过滤器。阅读这这篇文中的前提是你对Vue已经有了基本的语法基础。 Vue.Js中的过滤器基础 过滤器是一个通过输入数据,能够及时对数据进行处理并返回一个数据结果的简单函数。Vue有很多很便利的过滤器,可以参考官方文档
我有一个副本设置与1个仲裁器和3个Mongo数据库。 其中2个数据库(db1和db2)我给出了成为主数据库的同等优先级,第三个数据库(db3)我给出了0优先级。 我是不是漏掉了什么??
本文向大家介绍C#中面向对象编程机制之继承学习笔记,包括了C#中面向对象编程机制之继承学习笔记的使用技巧和注意事项,需要的朋友参考一下 继承反应了类和类之间的关系。 世界上很多事物都是有共性的,共性的那一部分我们就抽象为基类,用于派生其它类,这样提高了代码的复用性,使得代码的结构清晰易读,而且易于代码的扩展和维护。 C#的继承只能继承自一个基类,这一点不同于C++的继承。 C#的继承具有传递性,即
本文向大家介绍C#中面向对象编程机制之多态学习笔记,包括了C#中面向对象编程机制之多态学习笔记的使用技巧和注意事项,需要的朋友参考一下 C#的多态性: 我的理解是:同一个操作,作用于不同的对象时,会有不同的结果,即同一个方法根据需要,作用于不同的对象时,会有不同的实现。 C#的多态包括:接口多态,继承多态。 其中继承多态又包括通过虚拟方法实现的多态和通过抽象方法实现的多态性 例如:基类动物都有吃的
总共1h 看的出来,面试之前面试官都没看过我的简历。聊了10分钟就开始做题,反转链表写了二十多分钟没做出来,最长递增子序列分别用贪心和动态规划写出来了,后面问了一点深度学习的八股,感觉方向不是很对口,大概率凉了。 1. 介绍一下实习做的工作 2. 反转链表,每n个反转一次 3. 最长递增子序列 4. 写一下交叉熵 5. 为什么分类损失不用MSE 6. 多头自注意力中的头从8个变为16个,计算量怎么
时间线:7月25日一面 -》 7月30日二面 -》8月2日终面 -》8月9日口头offer 一面主要偏项目,二面主要偏基础(纯八股拷打),三轮面试平均1小时,总体来说百度的效率算是很高了,顺便问问有朋友知道开奖具体时间吗? 自我介绍 讲一个最感兴趣的项目 SIFT算法(项目里面用了,让我讲底层原理) 有没有试过基于深度学习的模版匹配方法(列了两个Google的模型,没听说过) YOLO系列的发展趋
简单回顾下虚拟内存技术,基于局部性原理来实现,总结起来就是两句话: 在程序执行过程中,当 CPU 所需要的信息不在内存中的时候,由操作系统负责将所需信息从外存(磁盘)调入内存,然后继续执行程序 如果调入内存的时候内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存 整个请求调页的过程大概是这样的: 那么,到底哪些页面该被从内存中换出来,哪些页面又该被从磁盘中调入内存呢? 这就是『页面置换
1、自我介绍 2、深挖腾讯实习项目(又问了20min,感觉两面的面试官都很感兴趣) 3、如何在实习项目中进行prompt调优的? 4、介绍第一段实习 5、描述项目中自己实现的聚类算法,为什么不用dbscan聚类算法? 6、决策树节点分裂算法?(只说了信息熵的算法) 7、多线程和多进程适用的场景和区别? 8、介绍rpc框架 9、go语言的基础? 10、go语言的异常处理? 11、是否用过defer?
1.自我介绍; 2.做过哪些项目(说了一下自己的论文和项目); 3.推荐的任务和应用场景(主要是做序列推荐的); 4.如何缓解数据稀疏和冷启动的问题(使用辅助信息用基于内容的协同过滤); 5.有了解过语音算法吗(这里只是说了一下语音中的频域和时域); 6.介绍一下XGboost,其结构以及其拟合的目标; 7.熟悉使用什么深度学习框架(Pytorch); 8.用过C++吗(了解一些基本语法,开发过一
1.自我介绍; 2.论文中使用的技术(对比学习、元学习); 3.了解VAE吗,VAE做什么的(生成式任务); 4.了解GAN吗,GAN的思想; 5.了解NLP吗,用过哪些模型(BERT、Transformer、Word2Vec); 6.常用正则项有哪些(L1、L2、Lp),说一说各自的优缺点; 7.常用激活函数有哪些(Sigmoid、ReLU、Softmax、tanh),说一说各自的特点以及适用场
1.自我介绍; 2.介绍一下项目(对着github介绍,模型、评价指标); 3.对比学习(公式、具体实现方法); 4.深度学习模型了解哪些(RNN、CNN、Transformer、BERT); 5.说一下RNN梯度消失和梯度爆炸的问题,缓解办法(引入门控机制、LSTM、GRU等); 6.了解过语音算法相关的模型吗(RNN、LSTM、BiLSTM),更近一点的呢(DFSMN); 7.为什么想要来做语
全程50分钟,电话面,但是有代码题 部门是营销算法 1.自我介绍 2.介绍第一个项目,我的是一个RAG的项目,讲完后面试官没有过多的提问,让我说一下难点,然后问我lora微调的数据怎么构建的,为什么要微调 3.介绍第二个项目,我的是一个论文项目,我就讲了一下论文的整体,然后面试官问我的另一篇论文是不是也是这个任务上的,我说是,他说讲一下两篇的不同,我就从基座模型不同、motivation的差异讲
【一面】 总共约30分钟。 介绍一下Transfomer架构 介绍一下endcoder部分和decoder部分的交互 介绍一下QKV矩阵的自注意力计算公式 介绍一下BN和LN 实习时间安排 论文进展 反问环节 总的来说体验良好比较轻松,回答的问题有些小瑕疵面试官小哥哥也安慰说小问题没关系。 【二面】 总共约20分钟。 主要是讨论项目和论文,没有特别去问八股文或者其他的什么内容。
1、自我介绍 2、深挖腾讯实习经历(聊了20min) 3、介绍第一段实习经历 4、指针和引用的区别 5、什么时候用malloc,什么时候用new(这里没答上来,感觉cpp里基本都用new了吧) 6、介绍智能指针(unique_ptr,shared_ptr,weak_ptr) 7、智能指针的底层如何实现的 8、如何排查内存泄露问题的 9、介绍c++的内存分布 10、静态链接和动态链接的区别 11、动