我刚到Java,对子字符串理解得很好。我对str.substring(i,i+3)的含义感到困惑。i是什么的索引?(0,0+3)?谢谢. 这是我的代码 公共类xyzThere{
有关TensorFlow与其他框架的详细对比可以阅读: https://zhuanlan.zhihu.com/p/25547838 01 TensorFlow的编程模式 编程模式分为两种:命令式编程与符号式编程 前者是我们常用的C++,java等语言的编程风格如下 命令式编程看起来逻辑非常清晰,易于理解。而符号式编程涉及较多的嵌入和优化,如下 执行相同的计算时c,d可以共用内存,使用Tenso
每次将一个类别作为正类,其余类别作为负类。此时共有(N个分类器)。在测试的时候若仅有一个分类器预测为正类,则对应的类别标记为最终的分类结果。 【例】当有4个类别的时候,每次把其中一个类别作为正类别,其余作为负类别,共有4种组合,对于这4中组合进行分类器的训练,我们可以得到4个分类器。对于测试样本,放进4个分类器进行预测,仅有一个分类器预测为正类,于是取这个分类器的结果作为预测结果,分类器2预测的结果是类别2,于是这个样本便属于类别
一面4.3 问了下GNN相关的知识(由于我是graph背景) 以及机器学习的基础知识 二面4.10 问了下实习的项目以及之前做过一深度学习相关的东西 特别细 #你收到了团子的OC了吗# offer4.17
序言 整理一些好的网站和文档,或其他有用的资料 学习路线 不知如何学?什么都懂了,不知道学啥了?应该怎么学?前端到底还需要学什么?…… 有学习疑问的都建议看一下 Web Developer 成长路线图 前端StuQ技能图谱 编程学习网站 stackoverflow (无需解释) Github (借助github:阅读优秀框架源码,编写开源项目,有能力尝试去造轮子) 慕课网 FreeCodeCamp
1.4 Linux 该如何学习 为什么大家老是建议学习Linux最好能够先舍弃X Window的环境呢? 这是因为X window了不起也只是Linux内的“一套软件”而不是“Linux核心”。 此外,目前发展出来的X-Window对于系统的管理上还是有无法掌握的地方,举个例子来说,如果 Linux本身捉不到网卡的时候,请问如何以X Window来捉这个硬件并且驱动他呢? 还有,如果需要以Tarb
TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算。 为了更方便 TensorFlow 程序的理解、调试与优化,我们发布了一套叫做 TensorBoard 的可视化工具。你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。 当 TensorBoard 设置完成后,它应该是这样子的: 数据序列
这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手。如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读这个快速上手教程。 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World"。就好比编程入门有Hello World,机器学习入门有MNIST。 MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字
大多数人听到“机器学习”,往往会在脑海中勾勒出一个机器人:一个可靠的管家,或是一个可怕的终结者,这取决于你问的是谁。但是机器学习并不是未来的幻想,它已经来到我们身边了。事实上,一些特定领域已经应用机器学习几十年了,比如光学字符识别 (Optical Character Recognition,OCR)。但是直到 1990 年代,第一个影响了数亿人的机器学习应用才真正成熟,它就是垃圾邮件过滤器(sp
到此我们已经全面了解了一些关键概念,如Internet、WWW、客户端、服务器、本地应用、移动网页应用,前后端开发以及技术架构等。 现在让我们再来回顾一下引言部分提出的问题: 为什么要学?是不是适合你?怎么学? 我们的建议是: 1. 如果你偏感性一点,喜欢与人交流多于服务器命令行交互,那么你适合学习客户端开发技术,而在客户端技术里,HTML5将在PC端替代Flash和Silverlight插件,在
当你开始思考你应该如何学习WebGL和Three.js的时候,相信你至少对相关的关键词了解过了,希望通过WebGL或Three.js实现你想要的Web3D功能,也许你也会去思考通过WebGL或Three.js能不能实现你想要的功能,也许你是因为领导临时分配任务,还不太清楚WebGL和Three.js是什么,个人建议是不要做过多思考,先看看相关的具体技术教程,随着时间的推移你自然会明白Canvas、
感知机学习问题转化为求解损失函数的最优化问题,最优化的方法就是随机梯度下降法。 1. 学习算法的原始形式 给定一个训练数据集$$T={(x{(1)},y{(1)}),(x{(2)},y{(2)}),...,(x{(m)},y{(m)})}$$,其中,$$x{(i)}in X= Rn$$,$$y^{(i)}in Y=lbrace+1,-1rbrace$$,$$i=1,2,...,m$$,求参数$$w
大多数人听到“机器学习”,往往会在脑海中勾勒出一个机器人:一个可靠的管家,或是一个可怕的终结者,这取决于你问的是谁。但是机器学习并不是未来的幻想,它已经来到我们身边了。事实上,一些特定领域已经应用机器学习几十年了,比如光学字符识别 (Optical Character Recognition,OCR)。但是直到 1990 年代,第一个影响了数亿人的机器学习应用才真正成熟,它就是垃圾邮件过滤器(sp
Angel 中的学习率Decay Angel参考TensorFlow实现了多种学习率Decay方案, 用户可以根据需要选用. 在描述具体Decay方案前, 先了解一下Angel中的Decay是怎样引入的, 在什么时候进行Decay. 对于第一个问题, Decay是在GraphLearner类中引入的, 在初始化时有如下代码: val ssScheduler: StepSizeScheduler =
平台列表 Google Cloud AI Cloud Machine Learning Engine 托管的机器学习服务 AutoML 自动化机器学习 机器学习API,如 Jobs, Video Intelligence, Vision, Speech, Natual Language 以及 Tanslation 等 Amazon Machine Learning SageMaker 自动化机器学