我是pytorch的新手,我正在尝试运行我找到的github模型并对其进行测试。因此,作者提供了模型和损失函数。
像这样:
#1. Inference the model
model = PhysNet_padding_Encoder_Decoder_MAX(frames=128)
rPPG, x_visual, x_visual3232, x_visual1616 = model(inputs)
#2. Normalized the Predicted rPPG signal and GroundTruth BVP signal
rPPG = (rPPG-torch.mean(rPPG)) /torch.std(rPPG) # normalize
BVP_label = (BVP_label-torch.mean(BVP_label)) /torch.std(BVP_label) # normalize
#3. Calculate the loss
loss_ecg = Neg_Pearson(rPPG, BVP_label)
数据加载
train_loader = torch.utils.data.DataLoader(train_set, batch_size = 20, shuffle = True)
batch = next(iter(train_loader))
data, label1, label2 = batch
inputs= data
假设我想训练这个模型15个时代。这就是我到目前为止所做的:我正在尝试设置优化器和训练,但我不确定如何将自定义丢失和数据加载绑定到模型,并正确设置15个历元训练。
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
for epoch in range(15):
....
有什么建议吗?
我假设BVP_标签是列车装载机的标签1
train_loader = torch.utils.data.DataLoader(train_set, batch_size = 20, shuffle = True)
# Using GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = PhysNet_padding_Encoder_Decoder_MAX(frames=128)
model.to(device)
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
for epoch in range(15):
model.train()
for inputs, label1, label2 in train_loader:
rPPG, x_visual, x_visual3232, x_visual1616 = model(inputs)
BVP_label = label1 # assumed BVP_label is label1
rPPG = (rPPG-torch.mean(rPPG)) /torch.std(rPPG)
BVP_label = (BVP_label-torch.mean(BVP_label)) /torch.std(BVP_label)
loss_ecg = Neg_Pearson(rPPG, BVP_label)
optimizer.zero_grad()
loss_ecg.backward()
optimizer.step()
PyTorch培训步骤如下。
在列车环路中
如你所知,你也可以查看PyTorch教程。
用实例学习PyTorch
什么是火炬。真的吗?
这是我的培训代码 滚轮编号。火车 结果训练 当我使用这段代码测试它时。 给出了如下结果。有些时候是错的。
我想训练自己的自定义模型。我可以从哪里开始? 我使用这个样本数据来训练一个模型: 基本上,我想从给定的输入中找出一些无意义的文本。 我尝试了opennlp开发文档中给出的以下示例代码,但出现了错误:Model与name finder不兼容!
我有一个模型。预训练的pkl文件以及与ml模型相关的所有其他文件。我想把它部署到aws sagemaker上。但是在没有培训的情况下,如何将其部署到aws sagmekaer,就像aws sagemaker中的fit()方法一样,运行train命令并推送模型。焦油gz到s3位置,当使用deploy方法时,它使用相同的s3位置来部署模型,我们不会在s3中手动创建与aws模型创建的位置相同的位置,并使
问题内容: 我正在看TensorFlow“ MNIST对于ML初学者”教程,我想在每个训练步骤之后打印出训练损失。 我的训练循环目前看起来像这样: 现在,定义为: 我要打印的损失在哪里: 一种打印方式是在训练循环中显式计算: 我现在有两个问题: 鉴于已经在期间进行了计算,因此将其计算两次效率低下,这需要所有训练数据的前向通过次数的两倍。有没有一种方法可以访问在计算期间的value ? 我如何打印?
我想使用Apache OpenNLP为我的母语乌尔都语训练NER模型。我已经准备好了中的训练数据。制作训练模型(. bin)的下一步是什么,就像我们在模型下载部分的OpenNLP站点上找到的那样。
本文向大家介绍TensorFlow如何用于定义损失函数,优化器,训练模型并在Python中的IMDB数据集上对其进行评估?,包括了TensorFlow如何用于定义损失函数,优化器,训练模型并在Python中的IMDB数据集上对其进行评估?的使用技巧和注意事项,需要的朋友参考一下 Tensorflow是Google提供的一种机器学习框架。它是一个开放源代码框架,可与Python结合使用,以实现算法,