当前位置: 首页 > 知识库问答 >
问题:

卷积网络的输入通道数

公西兴业
2023-03-14

我正在关注TensorFlow的“专家深度列表”教程:https://www.tensorflow.org/tutorials/mnist/pros/

第二卷积层具有形状【5、5、32、64】;也就是说,它有32个输入,而第一个卷积层有1个输入(该输入是我了解原始图像的灰度值)。

第二个卷积层有32个输入通道意味着什么?这是否意味着在第二层中学习的64个过滤器将全部应用(移位)到每像素具有32个点的“虚拟”图像(该“虚拟”图像由在第一步中学习的每个过滤器已应用到的原始图像组成)?如果我之前所说的是正确的,那么如何将2D 5x5过滤器应用于每个像素具有32个点/值的图像?

共有1个答案

燕正德
2023-03-14

第一卷积层具有以下权重:

W_conv1 = weight_variable([5, 5, 1, 32])

这里,5x5是补丁大小,1是输入通道数,32是输出通道数。因此,在第一次卷积之后,输出有32个通道,因此第二个卷积层的权重矩阵的形状有32个输入通道。

 类似资料:
  • 我对卷积神经网络中的多通道场景感到困惑。 有人能帮帮我。

  • 然而,我不明白如何扩展这个模型来处理多个通道。每个特征图是否需要三个独立的权重集,并在每种颜色之间共享? 参考本教程的“共享权重”部分:http://deeplearning.net/tutorial/lenet.html特征图中的每个神经元都引用层m-1,颜色是从单独的神经元引用的。我不明白他们在这里表达的关系。神经元是核还是像素?为什么它们引用图像的不同部分? 根据我的例子,一个神经元内核似乎

  • 我正在尝试创建一个CNN来对数据进行分类。我的数据是X[N\u数据,N\u特征]我想创建一个能够对其进行分类的神经网络。我的问题是关于keras后端Conv1D的输入形状。 我想在上面重复一个过滤器。。假设有10个特征,然后为接下来的10个特征保持相同的权重。对于每个数据,我的卷积层将创建N\U特征/10个新神经元。我该怎么做?我应该在input\u形状中放置什么? 有什么建议吗?非常感谢。

  • 真的很难理解keras中卷积1d层的输入维度: 输入形状 带形状的三维张量:(采样、步长、input\u dim)。 输出形状 带形状的三维张量:(采样、新的\u步骤、nb\u过滤器)。由于填充,步骤值可能已更改。 我希望我的网络接受价格的时间序列(101,按顺序)并输出4个概率。我当前的非卷积网络做得相当好(训练集为28000)如下所示: 为了改进这一点,我想从具有长度为10的局部感受野的输入层

  • 我在使用Keras和Python对3D形状进行分类时遇到了一个问题。我有一个文件夹,里面有一些JSON格式的模型。我将这些模型读入Numpy数组。模型是25*25*25,表示体素化模型的占用网格(每个位置表示位置(i、j、k)中的体素是否有点),因此我只有1个输入通道,就像2D图像中的灰度图像一样。我拥有的代码如下: 在此之后,我得到以下错误 使用TensorFlow后端。回溯(最后一次调用):文

  • 我正在开发一种卷积神经网络用于图像分类或更好的车牌分类。这些车牌最多包含8个字符,每个字符可以包含37个字符(A-Z、0-9和空格)。我现在想知道如何设计网络中的最后两层。我认为,最后一个必须是具有37个概率的softmax层。这应该完全连接到一个(?)神经元在前一层?我想,在前一层我们需要8个神经元,因为之前的车牌上有8个字符,但我不确定。在此层之前,我添加了一些卷积层和maxPooling层。